Elaboration and Characterization of PVC Matrix Nanocomposites Reinforced with Nanoclay: A Case Study of Maghnite

Authors

  • Badra Bouchareb Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria.

DOI:

https://doi.org/10.37255/jme.v20i4pp159-169

Keywords:

PVC, Raw Maghnite, Modified Maghnite, Nanocomposites, Physical properties

Abstract

Poly vinyl chloride (PVC)-Maghnite (MMT) nanocomposites were prepared by melt blending using a two-roll mill. The aim of this study was to investigate the effect of incorporating Algerian natural clay (Maghnite), extracted from the Roussel deposit in Maghnia, located in the northwest of Algeria, into the PVC matrix. This nanofiller was incorporated into the PVC matrix at low contents (1 to 4 phr) in two forms: raw (RMMT) and modified (OMMT) using a surfactant (hexadecylamine) and in the presence of a plasticizer (DOP). The properties of PVC-Maghnite nanocomposites were analyzed using multiple physicochemical techniques, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Light transmittance, scanning electron microscopy (SEM), and their resistance to degradation was also evaluated. The analyses conducted using XRD and SEM revealed that the modified Maghnite is well dispersed and exfoliated within the PVC matrix. The results obtained from TGA, combined with thermal stability studies and light transmission tests of the various nanocomposites, demonstrate that the incorporation of OMMT enhances the thermal stability of PVC through its barrier effect, which limits the diffusion of heat and volatile decomposition products. Furthermore, the modified Maghnite increases the light transmission (UV, visible, and IR) of the nanocomposites compared to pure PVC and composites containing unmodified Maghnite.

Downloads

Download data is not yet available.

Author Biography

  • Badra Bouchareb, Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria.

    Laboratory of Physical and Chemical Properties of High Polymers (LPCHP), Ferhat ABBAS University of Sétif-1, Algeria

References

1. C. M. Chan, J. Wu, J. X. Li, and Y. K. Cheung, “Polypropylene/calcium carbonate nanocomposites,” *Polymer*, vol. 43, pp. 2981–2992, 2002, doi: 10.1016/S0032-3861(02)00120-9.

2. N. J. Lee and J. Jang, “The effect of fibre content on the mechanical properties of glass fibre mat/polypropylene composites,” *Composites Part A*, vol. 30, pp. 815–822, 1999, doi: 10.1016/S1359-835X(98)00185-7.

3. N. Othman, H. Ismail, and M. Mariatti, “Effect of compatibilisers on mechanical and thermal properties of bentonite filled polypropylene composites,” *Polymer Degradation and Stability*, vol. 91, pp. 1761–1774, 2006, doi: 10.1016/j.polymdegradstab.2005.11.022.

4. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, “Mechanical properties of nylon 6–clay hybrid,” *Journal of Materials Research*, vol. 8, pp. 1185–1189, 1993.

5. X. Zhang, “Nanocomposites in tire development – Benefits, challenges, and the role of carbon nanotubes and graphene,” *Highlights in Engineering and Technology*, vol. 116, pp. 183–189, 2024, doi: 10.54097/t1dyjv89.

6. E. Grosu, “Applications of polyvinylchloride (PVC)/thermoplastic nano-, micro- and macroblends,” in *Polyvinylchloride-based Blends: Preparation, Characterization and Applications*, P. M. Visakh and R. N. Darie-Nita, Eds. New York, NY, USA: Springer, 2022, pp. 75–89.

7. M. J. M. Acosta, B. F. Tutikian, V. Ortolan, M. L. S. Oliveira, C. H. Sampaio, L. P. Gómez, and L. F. S. Oliveira, “Fire resistance performance of concrete–PVC panels with polyvinyl chloride (PVC) stay-in-place (SIP) formwork,” *Journal of Materials Research and Technology*, vol. 8, pp. 4094–4107, 2019, doi: 10.1016/j.jmrt.2019.07.018.

8. S. B. A. Boraei, B. Bakhshandeh, F. Mohammadzadeh, D. M. Haghighi, and Z. Mohammadpour, “Clay-reinforced PVC composites and nanocomposites,” *Heliyon*, vol. 10, 2024, doi: 10.1016/j.heliyon.2024.e29196.

9. F. Kádár, L. Százdi, E. Fekete, and B. Pukánszky, “Surface characteristics of layered silicates: Influence on the properties of clay/polymer nanocomposites,” *Langmuir*, vol. 22, pp. 7848–7854, 2006, doi: 10.1021/la060144c.

10. B. Belbachir and B. Makhoukhi, “Adsorption of Bezathren dyes onto sodic bentonite from aqueous solutions,” *Journal of the Taiwan Institute of Chemical Engineers*, vol. 75, pp. 105–111, 2017, doi: 10.1016/j.jtice.2016.09.042.

11. L. Le Pluart, J. Duchet, H. Sautereau, and J. F. Gérard, “Surface modifications of montmorillonite for tailored interfaces in nanocomposites,” *Journal of Adhesion*, vol. 78, pp. 645–662, 2002, doi: 10.1080/00218460213738.

12. C. K. Bendeddouche, M. Adjdir, and H. Benhaoua, “Stereoselective cyclopropanation under solvent-free conditions catalyzed by a green and efficient recyclable Cu-exchanged bentonite,” *Letters in Organic Chemistry*, vol. 13, pp. 217–223, 2016, doi: 10.2174/1570178613666160109005049.

13. S. Ayyapan, G. N. Subbanna, R. S. Gopalan, and C. N. R. Rao, “Nanoparticles of nickel and silver produced by the polyol reduction of the metal salts intercalated in montmorillonite,” *Solid State Ionics*, vol. 84, pp. 271–281, 1996, doi: 10.1016/0167-2738(96)00021-5.

14. C. H. Chen, C. H. Teng, M. Tsai, and F. Yen, “Preparation and characterization of rigid poly(vinyl chloride)/MMT nanocomposites. II. XRD, morphological and mechanical characteristics,” *Journal of Polymer Science Part B: Polymer Physics*, vol. 44, pp. 2145–2154, 2006, doi: 10.1002/polb.20880.

15. W. Xu, Z. Zhou, M. Ge, and W. P. Pan, “Poly(vinyl chloride)/montmorillonite nanocomposites: Glass transition temperature and mechanical properties,” *Journal of Thermal Analysis and Calorimetry*, vol. 78, pp. 91–99, 2004, doi: 10.1023/B:JTAN.0000042157.96074.44.

16. F. Bouzidi, M. Guessoum, M. Fois, and N. Haddaoui, “Viscoelastic, thermo-mechanical and environmental properties of composites based on polypropylene/poly(lactic acid) blend and copper-modified nanoclay,” *Journal of Adhesion Science and Technology*, vol. 32, pp. 496–515, 2018, doi: 10.1080/01694243.2017.1365422.

17. M. B. Ahmad, W. H. Hoidy, B. I. Nor Azowa, and E. A. J. Al-Mulla, “Modification of montmorillonite by new surfactants,” *Journal of Engineering and Applied Sciences*, vol. 4, pp. 184–188, 2009.

18. D. Dai and M. Fan, “Investigation of the dislocation of natural fibres by Fourier transform infrared spectroscopy,” *Vibrational Spectroscopy*, vol. 55, pp. 300–306, 2011, doi: 10.1016/j.vibspec.2010.12.009.

19. S. Bouhank and S. Nekkaa, “Effects of chemical treatments on the structural, mechanical and morphological properties of poly(vinyl chloride)/Spartium junceum fiber composites,” *Cellulose Chemistry and Technology*, vol. 49, pp. 375–385, 2015.

20. D. E. Kheeoub, M. Belbachir, and S. Lamouri, “Nylon 6/clay nanocomposites prepared with Algerian modified clay (12-maghnite),” *Reviews in Chemical Engineering*, vol. 41, pp. 5217–5228, 2015, doi: 10.1007/s11164-014-1623-8.

21. C. Wan, Y. Zhang, and Y. Zhang, “Effect of alkyl quaternary ammonium on processing discoloration of melt-intercalated PVC–montmorillonite composites,” *Polymer Testing*, vol. 23, pp. 299–306, 2004, doi: 10.1016/j.polymertesting.2003.08.001.

22. J. Pagacz and K. Pielichowski, “Preparation and characterization of PVC/montmorillonite nanocomposites: A review,” *Journal of Vinyl and Additive Technology*, vol. 15, pp. 61–76, 2009, doi: 10.1002/vnl.20186.

23. H. Andreas, *Plastics Additives Handbook*. USA: Hanser Publishers, 1993.

24. F. Gong, M. Feng, G. Zhao, S. Zhang, and M. Yang, “Thermal properties of poly(vinyl chloride)/montmorillonite nanocomposites,” *Polymer Degradation and Stability*, vol. 84, pp. 289–294, 2004, doi: 10.1016/j.polymdegradstab.2003.11.003.

25. K. C. Mensker and G. T. Fedoseeva, *The Degradation and Stabilization of PVC*. New York, NY, USA: Chemistry Press, 1979.

26. G. Scott and M. Tahan, “Effect of some additives on the photoxidation of rigid PVC,” *European Polymer Journal*, vol. 11, pp. 535–539, 1975, doi: 10.1016/0014-3057(75)90106-8.

27. G. Scott, M. Tahan, and J. Vyvoda, “The effect of thermal processing on PVC—III. Photo-oxidation of unstabilized PVC,” *European Polymer Journal*, vol. 14, pp. 1021–1026, 1978, doi: 10.1016/0014-3057(78)90161-1.

28. T. Marconi, T. Faravelli, G. Bozzano, M. Dente, and E. Ranzi, “Thermal degradation of poly(vinyl chloride),” *Journal of Analytical and Applied Pyrolysis*, vol. 70, pp. 519–553, 2003, doi: 10.1016/S0165-2370(03)00024-X.

29. J. C. Garcia-Quesada, A. Marcilla, and M. Gilbert, “Thermal degradation of silane crosslinked unplasticized PVC,” *Journal of Analytical and Applied Pyrolysis*, vol. 60, pp. 159–177, 2001, doi: 10.1016/S0165-2370(00)00190-X.

30. T. Peprnicek, J. Duchet, L. Kovarova, J. Malac, J. F. Gérard, and J. Simonik, “Poly(vinyl chloride)/clay nanocomposites: X-ray diffraction, thermal and rheological behavior,” *Polymer Degradation and Stability*, vol. 91, pp. 1855–1860, 2006, doi: 10.1016/j.polymdegradstab.2005.11.003.

31. C. Wan, X. Qiao, Y. Zhang, and X. Zhang, “Effect of different clay treatment on morphology and mechanical properties of PVC–clay nanocomposites,” *Polymer Testing*, vol. 22, pp. 453–463, 2003, doi: 10.1016/S0142-9418(02)00126-5.

32. N. Karakehya and S. Bilgic, “Surface characterization of montmorillonite/PVC nanocomposites by inverse gas chromatography,” *International Journal of Adhesion and Adhesives*, vol. 51, pp. 140–147, 2014, doi: 10.1016/j.ijadhadh.2014.03.001.

33. B. Bouchoul, M. T. Benaniba, and V. Massardier, “Effect of biobased plasticizers on thermal, mechanical, and permanence properties of poly(vinyl chloride),” *Journal of Vinyl and Additive Technology*, vol. 20, pp. 260–267, 2014, doi: 10.1002/vnl.21356.

34. P. Jia, C. Bo, L. Hu, M. Zhang, and Y. Zhou, “Synthesis of a novel polyester plasticizer based on glyceryl monooleate and its application in poly(vinyl chloride),” *Journal of Vinyl and Additive Technology*, vol. 22, pp. 514–519, 2016, doi: 10.1002/vnl.21468.

35. Y. Yang, J. Huang, R. Zhang, and J. Zhu, “Designing bio-based plasticizers: Effect of alkyl chain length on plasticization properties of isosorbide diesters in PVC blends,” *Materials & Design*, vol. 126, pp. 29–36, 2017, doi: 10.1016/j.matdes.2017.04.005.

36. T. Abdel-Baset, M. Elzayat, and S. Mahrou, “Characterization and optical and dielectric properties of polyvinyl chloride/silica nanocomposites films,” *International Journal of Polymer Science*, vol. 2016, pp. 1–13, 2016, doi: 10.1155/2016/1707018.

37. A. M. El Sayed, S. El-Sayed, W. M. Morsi, S. Mahrous, and A. Hassen, “Synthesis, characterization, optical, and dielectric properties of polyvinyl chloride/cadmium oxide nanocomposite films,” *Polymer Composites*, vol. 35, pp. 1842–1851, 2014, doi: 10.1002/pc.22839.

38. B. Bouchoul and M. T. Benaniba, “Assessment of derived sunflower oil as environmentally friendly plasticizers in poly(vinyl chloride),” *Polímeros*, vol. 31, pp. 1–9, 2021, doi: 10.1590/0104-1428.20210015.

39. T. Ren, J. Yang, Y. Huang, J. Ren, and Y. Liu, “Preparation, characterization, and properties of poly(vinyl chloride)/compatibilizer/organophilic-montmorillonite nanocomposites,” *Polymer Composites*, vol. 27, pp. 55–64, 2006, doi: 10.1002/pc.20161.

40. Y. Hamid, A. Aznizam, and N. Deirram, “Mechanical and morphological properties of waste *Eurycoma longifolia* fiber/montmorillonite reinforced poly(vinyl chloride) hybrid composites,” *Journal of Applied Polymer Science*, vol. 128, pp. 1170–1175, 2013, doi: 10.1002/app.38401.

41. D. Wu, X. Wang, Y. Song, and R. Jin, “Nanocomposites of poly(vinyl chloride) and nanometric calcium carbonate particles: Effects of chlorinated polyethylene on mechanical properties, morphology, and rheology,” *Journal of Applied Polymer Science*, vol. 92, pp. 2714–2723, 2004, doi: 10.1002/app.20295.

42. C. H. Chen, R. D. Wesson, J. R. Collier, and Y. W. Lo, “Studies of rigid poly(vinyl chloride) compounds. I. Morphological characteristics of poly(vinyl chloride)/chlorinated polyethylene blends,” *Journal of Applied Polymer Science*, vol. 58, pp. 1087–1091, 1995, doi: 10.1002/app.1995.070580701

Downloads

Published

2025-12-01

How to Cite

[1]
“Elaboration and Characterization of PVC Matrix Nanocomposites Reinforced with Nanoclay: A Case Study of Maghnite”, JME, vol. 20, no. 4, pp. 159–169, Dec. 2025, doi: 10.37255/jme.v20i4pp159-169.

Similar Articles

1-10 of 238

You may also start an advanced similarity search for this article.