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ABSTRACT 
Prediction of surface roughness is essential in any machining process as it plays a vital role in 

determining the quality of components. A good quality surface improves fatigue strength, wear resistance, 

and corrosion resistance. The present work involves the development of a mathematical model for surface 

roughness of a turning process based on a recently emerged evolutionary approach called Genetic 

programming (GP).  The machining parameters of turning such as cutting speed, feed rate, and nose radius 

are considered as the input variables. Two sets of experimental data were taken: training data set and testing 

data set.  The model established by GP based on the training data set is validated with the testing data set.  

 

Keywords: Surface roughness, turning, genetic programming, and evolutionary process 

 

1. Introduction 
 

Surface roughness plays an important role 

in any machining process to determine the quality of 
machined components. It not only affects the 

operational characteristics but also the manufacturing 

cost. The properties of machined components such as 

fatigue strength, wear resistance, and corrosion 

resistance are greatly affected by the surface 

roughness. Surface roughness refers to the magnitude 

of irregularities of material resulted during 

machining operation. There are several ways to 

describe surface roughness. One of them is average 

roughness, which is quoted as Ra. Ra is the most 

commonly used and internationally recognized 

parameter for measuring surface roughness.   
Theoretically, Ra represents the arithmetic average 

value of departure of the profile from the mean line 

throughout the sampling length [1].   

Surface roughness is influenced by several 

factors such as tool geometry, cutting parameters, 

tool wear, tool deflection, chatter, cutting fluid and 

work piece properties. Out of the above-mentioned 
factors, cutting parameters are the most significant 

factors that affect the surface roughness. Therefore in 

the present work, the mathematical model in terms of 

cutting conditions is developed. However, 

determination of surface roughness based on 

theoretical analysis is very difficult as it is dynamic, 

complicated and completely process dependent.  

Therefore several attempts have been made in the 
literature to develop the empirical models for surface 

roughness. Most approaches involve the usage of 

Response surface methodology [2,3,4] but in the 

Response surface methodology (RSM), a model of 

certain degree has to be determined in advance. 

Because of this pre-specified degree of the model, 

RSM may often not handle a highly non-linear 

responsive data as exist in machining processes. 

Some other approaches were based on using Neural 

networks for the prediction of surface roughness [5]. 

However, Neural networks do not establish the 

quantitative relationships between the input variables 
and the output parameters. In the present work, an 

efficient evolutionary approach called Genetic 

programming (GP) is proposed for the quantitative 

modeling of surface roughness based on 

experimental values and the proposed approach can 

handle any amount of complexity between input 

variables and output parameters.  

 

2.Proposed Method –  
Genetic Programming 
 

Evolutionary approaches attempt to find the 

best solution to a problem by mimicking the process 
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of evolution in nature using Darwin’s theory of 

survival of the fittest. Individual potential solutions 

are selected based on their fitness from the initially 

generated random population.  The potential 

solutions are then recombined to produce better 

solutions. The extreme popularity of these techniques 

is due to their success at searching highly complex 

non-linear spaces and their robustness in practical 

applications.  
 

Genetic programming is a relatively new 

approach when compared to other variations of 

evolutionary algorithms such as evolutionary 

strategies, genetic algorithms and evolutionary 

programs. The main principles of Genetic 

programming (GP) and its related terminology were 

developed by Koza [6]. Unlike the other evolutionary 

algorithms, which are used for optimization, GP is 

used for empirical modeling of complex systems.  

GP evolves solutions in the form of 

computer programs of uneven length. In GP, a 

solution to a problem is represented as a computer 

program, which has a hierarchical composition of 

primitive functions and terminals appropriate to 

particular problem domain. In GP terminology, 

inputs are usually called terminals and user specifies 

a number of functions that manipulate terminals. The 

set of primitive functions typically include: 
arithmetic operations (+, -, *, /), boolean operations 

(AND, OR, NOT ), logical operations - (IF-THEN-

ELSE ), and non-linear functions (sin, cos, tan, exp, 

log). Typical representation of an individual in GP 

for the expression {(2+x)(z)}-3xz is shown in Fig 1. 

The set of functions in the representation are 

{constant, -, *, +} and the set of terminals are {x, y, 

z}. 

 

 
               Fig 1. Representation of GP tree 

 

2.1 Generation of Initial Population 
GP starts with generation of an initial 

population by random compositions of the functions 

and terminals.  The initial population is generated in 

such a way that it has a good diversity of individuals 
of different shapes and sizes. One of the most 

commonly used methods for ensuring the diversity is 

by the ramped half-and-half algorithm [6]. This 

method creates an equal number of trees for each 

depth between 2 and maximum depth specified by 

the user. 

 

2.2 Genetic Operators 
  The fitter initial population is gradually 

improved through the genetic operators: 

reproduction, crossover, and mutation. Reproduction 

is the exploitation phase of search in which emphasis 

is given to the high fit individuals. The reproduction 

operation ensures that good individuals remain in the 

population. It selects an individual from the current 

generation and copies it, without alteration, into the 

next population. There are a number of reproduction 

operators in the literature for propagating the 
influence of the best-fit individuals of current 

generation to the next generation; most commonly 

used are tournament selection, rank selection and 

roulette wheel selection. A new mating pool is found 

after the reproduction operator whose size is same as 

the parent population and individuals have 

representation in the new population proportional to 

their fitness. 
 

Exploration in GP is brought about by 

crossover and mutation operators. In crossover 
operation, two of the fittest individuals are randomly 

selected as the parent programs and selected parts of 

the parents are swapped to hopefully produce better 
programs. This process is illustrated in Fig. 2.  It 

could be noted that highlighted parts of the parent 

trees in the figure exchange each other to produce 

two offspring. The expressions for the two parents 

and two offspring are also presented. To preserve 

good solutions obtained so far, not all individuals are 

subjected to crossover. Although mutation maintains 

diversity but it is mainly intended to prevent getting 
stuck on a local minimum. Usually, one randomly 

selected node is replaced with another one from the 

same set except itself. The process of mutation is 

illustrated in Fig. 3. 
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2.3 Termination Criterion   
Implementation of above three operators 

constitutes one generation and the procedure is 

repeated until a termination criterion is met. The 

termination criterion can be either a prescribed 
number of generations or sufficient quality of the 

solution. The number of generations required for a 

satisfactory solution depends on the complexity of 

the problem. 

 

 
 

 

 

 
Fig .2 Illustration of Crossover operator 

 

 

 
Fig 3. Illustration of Mutation operator 

 

 

3. Experimental Details 
 

Experiments were conducted using 

Hardinge CNC Turning center on 6081 Aluminum. 

To perform turning, cemented carbide inserts of 

different nose radius were used. Cutting speed (x1), 

feed rate (x2), and nose radius (x3) were considered 

as the input variables as they significantly affect the 

surface roughness. A constant depth of cut of 

0.25mm is maintained for all experiments. Based on 

the feasible values of machine tool and cutting tool , 

five levels of cutting speed 

(1500,1800,2100,2400,2700rpm), 8 levels of feed 

(0.05,0.1,0.15,0.2,0.25,0.35,0.45), and 4 levels of 
nose radii (0.2,0.4,0.55,0.8mm) are taken. The 

surface roughness Ra was measured using a portable 

Mitutoyo Surftest instrument with a traverse length 

of 8mm. Each measurement is repeated four times, 

and the average value is considered to establish the 

model. The experimental values were divided into 

two sets: training data set and testing data set and are 

listed in Tables 1 and 2 respectively. 

 

Table 1. Training data set 

x1(rpm) x2(mm/rev) x3(mm) Ra 

1500 0.05 0.2 0.78 

1500 0.15 0.2 3.88 

1500 0.25 0.2 4.84 

1500 0.2 0.2 4.1 

1800 0.15 0.2 2.82 

1800 0.25 0.2 4.87 

1800 0.1 0.2 1.78 

1800 0.2 0.2 4.34 

2100 0.05 0.2 0.82 

2100 0.15 0.2 3.86 

2100 0.25 0.2 4.86 

2100 0.2 0.2 4.4 

2400 0.05 0.2 0.94 

2400 0.25 0.2 4.88 

2400 0.1 0.2 1.76 

2400 0.2 0.2 4.56 

2700 0.05 0.2 0.94 

2700 0.15 0.2 2.94 

2700 0.25 0.2 4.89 

2700 0.1 0.2 2.1 

1500 0.05 0.4 0.42 

1500 0.15 0.4 1.2 

1500 0.35 0.4 2.76 

1500 0.45 0.4 3.6 

1800 0.15 0.4 1.2 
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1800 0.25 0.4 2.1 

1800 0.35 0.4 3.3 

1800 0.45 0.4 3.6 

2100 0.05 0.4 0.48 

2100 0.25 0.4 2.22 

2100 0.35 0.4 3.1 

2100 0.45 0.4 3.98 

2400 0.05 0.4 0.42 

2400 0.15 0.4 1.2 

2400 0.35 0.4 2.76 

2400 0.45 0.4 3.88 

2700 0.15 0.4 1.2 

2700 0.25 0.4 2.31 

2700 0.35 0.4 3.22 

2700 0.45 0.4 4.79 

1500 0.05 0.55 0.42 

1500 0.25 0.55 1.9 

1500 0.35 0.55 2.52 

1500 0.45 0.55 4.78 

1800 0.05 0.55 0.42 

1800 0.15 0.55 1.54 

1800 0.35 0.55 2.38 

1800 0.45 0.55 4.66 

2100 0.15 0.55 1.54 

2100 0.25 0.55 2.1 

2100 0.35 0.55 2.3 

2100 0.45 0.55 3.68 

2400 0.05 0.55 0.41 

2400 0.25 0.55 1.98 

2400 0.35 0.55 2.7 

2400 0.45 0.55 4.18 

2700 0.05 0.55 0.38 

2700 0.15 0.55 1.48 

2700 0.35 0.55 2.89 

2700 0.45 0.55 3.78 

1500 0.15 0.8 1.41 

1500 0.25 0.8 2.64 

1500 0.35 0.8 4.22 

1500 0.45 0.8 4.46 

1800 0.05 0.8 0.67 

1800 0.25 0.8 2.5 

1800 0.35 0.8 3.76 

1800 0.45 0.8 4.76 

2100 0.05 0.8 0.48 

2100 0.15 0.8 1.41 

2100 0.35 0.8 3.86 

2100 0.45 0.8 4.68 

2400 0.15 0.8 1.38 

2400 0.25 0.8 2.4 

2400 0.35 0.8 3.54 

2400 0.45 0.8 4.81 

2700 0.05 0.8 0.41 

2700 0.25 0.8 2.64 

2700 0.35 0.8 3.36 

2700 0.45 0.8 4.8 

 

Table. 2: Testing data set 

 
4. Implementation 
 

To decide the elements of functional sets, 

initially some trial runs were conducted with 

x1(rpm) x2(mm/rev) x3(mm) Ra 

1500 0.1 0.2 1.84 

1800 0.05 0.2 0.92 

2100 0.1 0.2 1.89 

2400 0.15 0.2 3.21 

2700 0.2 0.2 4.2 

1500 0.25 0.4 1.98 

1800 0.05 0.4 0.42 

2100 0.15 0.4 1.24 

2400 0.25 0.4 2.34 

2700 0.05 0.4 0.43 

1500 0.15 0.55 1.2 

1800 0.25 0.55 1.89 

2100 0.05 0.55 0.41 

2400 0.15 0.55 1.24 

2700 0.25 0.55 1.8 

1500 0.05 0.8 0.48 

1800 0.15 0.8 1.38 

2100 0.25 0.8 2.8 

2400 0.05 0.8 0.43 

2700 0.15 0.8 1.34 
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different combinations. It was found that the 

probability of successful solution is the greatest, 

when only the basic arithmetic functions were used. 

The arithmetic elements that were considered are 

addition, subtraction, multiplication, and division. 

The terminal set consists of all input variables of the 

welding process that have been taken into 

consideration in the present study. In order to 

increase the diversity of the individuals, the random 
floating-point numbers from the range, (-20, 20), 

were added to the set of the terminals. An average 
percentage deviation of all experimental data for an 

individual was introduced as the fitness measure and 

is defined below:  

1

n i
ni


  



                                                       (1) 

 where, δ is the fitness, n is the total number of 

observations and i  is the percentage deviation of 

single sample data. The percentage deviation of 

single sample data produced by an individual is   

100%
M Pi i

i Mi




                             (2) 

 
 where, iM  is the experimentally measured value 

and iP   is the value predicted by the model. It is 

assumed that the model generated is a successful 

solution, if its average percentage deviation of the 

experimental data is less than 10%.   Preliminary 

experiments were performed to determine the best 

parameter settings for the GP. These preliminary 

test runs in the GP system were executed for the 

output parameters independently. Based on these 

experiments, the parameter values shown in Table 

3 were finally selected to generate the models. 

Evolutionary algorithms are generally robust to 
variations of control parameters [7]. However, 

some guidelines are provided in ref [8] for 

choosing the control parameters of standard GP. 

The software is developed in VC++ on a Pentium 

system with 2.8GHz processor.  

 

 Table 3. Control parameters 

____________________________________ 

Population size                                   300 

Number of generations                       125 

Number of runs                                   10 

Crossover probability (%)                   85 

Mutation probability (%)                     5 

Reproduction probability (%)              10 

Selection method                                 Tournament  

________________________________________ 

                                                    
 

Tests with populations of different sizes of 

200, 300 and 500 were also performed. In all cases, 

the best results were achieved with the large 

populations. However, the computation times were 

also increased from an average of 3 minutes for the 

population size of 100 to more than 10 minutes for 

the population size of 500. Thus, a reasonable size of 

300 was considered. In case of oversized programs, 

to avoid the excessive amount of computer time, the 

depth of initial generated programs was limited to 6 

and the depth of the program created by crossover 
was limited to 20. If an offspring had a depth of more 

than 20, it was replaced by one of its parents. The 

generated model by the proposed algorithm for the 

roughness is given in equation (3).   
Figs. 4 and 5 exhibit the percentage 

deviations of the best model generated by the 

algorithm for the training and the validation data sets 

respectively. It can be observed from the Fig.4 that 

the most deviations of the individuals are less than 

15%. The deviations of the individuals of the testing 

data set are well below 10%. 
 

 

 
 Fig.4  Percentage deviation for Training data set 
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Fig.5  Percentage deviation for Validation data set 
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5. Conclusions 
 

Surface roughness is an important measure 

of the technological quality of machined component 

product. It also greatly influences manufacturing cost 

and determines machine tool productivity. Being 

such an important measure, the present work 

proposes an evolutionary approach for empirical 

modeling of surface roughness of turning operation 

using Genetic programming (GP). The proposed 

approach neither requires any strict mathematical 
rule nor any prior knowledge of how to get the 

solution of the problem. GP uses evolutionary 

principles to evolve automatically mathematical 

models that best suit to the given experimental data. 

No assumptions about the shape, size, and 

complexity of the problem are required. GP is such a 

generalized approach that this can be applied any 

machining process under any number of input 

variables.  
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