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ABSTRACT 
     The recent research into the alternate sliding bearing materials unequivocally point to the 

beneficial role of lead (Pb) in aluminum (Al).  But, these alloys offer a manufacturing challenge, due 

to wide immiscibility gap. For such applications, apart from homogeneous microstructure, porosity 

control is also equally important, as it influences the tribological performance through spreading of 

lead in aluminum matrix. These objectives can be achieved together by mechanical alloying through 

powder metallurgy (P/M). However, die compaction in P/M results in inhomogeneous density 
distributions leading to distortion during sintering process. In order to control the shape of final P/M 

parts, the appropriate models are necessary for densification of composite powders to simulate cold 

compaction responses. In the present work, the authors studied the effect of alloy composition and 

ball to charge ratio on densification behaviour of conventional ball milled Al-Pb alloys, with a view to 

develop non-linear regression models that can best describe the  densification behaviour of ball milled 

Al-Pb alloys from compressibility test data. Based on their validation, the study concludes that 

Richards model effectively predicts densification behaviour of P/M processed Al-Pb alloys. Such 

modeling will be of great significance in simulating the cold compaction response, especially in case 

of alloys where no historical data exists regarding effect of processing conditions on densification 

behaviour. 
 
Key words: Al-Pb Alloys, Compressibility Test, Densification Modeling, Powder Metallurgy. 

 

1. Introduction 

 In the manufacturing technologies of P/M 
products, die compaction is widely used. However, P/M 

parts formed by die compaction have inhomogeneous 

density distributions due to the friction between the 

powder and the die well. Inhomogeneity in density leads 

to non-uniform shrinkage or distortion during sintering 

process, and thus makes it difficult to control the shape 

of final P/M parts [1]. In order to control the shape of 

final P/M parts, the appropriate models are necessary for 

densification of composite powders to simulate cold 

compaction responses. Theories describing the 

deformation of porous material are enumerated and the 
changes in density in powder forming process are 

analyzed with the help of a theoretical and numerical 

analysis by Bruhns and Sluzalec [2] to model the 

densification behaviour of porous materials. 

A number of yield functions have been 

developed for densification behaviour of metal powder, 

so far. Kuhn and Downey [3], Shima and Oyane [4], and 

Doraivelue et al [5] proposed yield functions based on 

uniaxial tests on sintered powder compacts. Brown and 

Weber [6], however, showed that densification behaviour 

of loose powder is different from that of sintered powder  

 

 in uniaxial tests. The discrepancy in densification 

behaviour is more important, in the early stage of 

compaction, because the inter-particle cohesion of loose 

powder compact is much lower than that of a sintered 

powder compact. Thus, these models [3-5] may not be 

appropriate for the early stage of compaction response. A 

macroscopic constitutive model from particle 
deformations was proposed by Fleck et al. [7]. However, 

this yield function did not agree well with experimental 

data of soft metal powder during die compaction [8]. 

      A number of researchers also adopted models, 
for densification of metal powder from soil mechanics. 

These models include Drucker-prager model [9], cam-

clay model [10], and cap models. Out of them, the cap 

model may be useful to predict densification behaviour of 

loose soft metal powder in all stages of compaction, 

because this model based on experimental data of  lose 

powder incorporates densification due to inter-particle 

movements as well as particle’s plastic deformation. 

      The hyperbolic cap model proposed by Lee and 

Kim [1] agreed well with the experimental data in the 

overall density region under cold compaction of 

Aluminum alloy powder. Whereas the finite element 



Journal of Manufacturing Engineering, December 2009, Vol. 4, Issue 4, pp 264-273 
    

© SME 265 

based models such as Shima –Oyane model and other 
models underestimated the experimental data in the low 

density region and in the high density region respectively. 

In view of the limitations in the existing densification 

models [2-10] an attempt is made in this work, to apply 

the techniques of non-linear regression models, for the 

experimental data generated on Al-Pb alloys. 

 

2. Experimental Details 

 The Al and Pb powders of various 

compositions, shown in Table 1 are used in the present 

work. Their particle distributions are presented in Figure 

1(a) and Figure 1 (b). These metal powders are mixed in 

conventional ball mill operated at 200 RPM. 

 

Table 1: Composition of Metal Powders 

Sl. No. Al (wt. %) Pb (wt. %) 

1 95 5 

2 90 10 

3 85        15 

4       80        20 

5       75        25 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1(a) Particle Size Distribution of Al Powder 
 

 

 
 

 

 

 

 

 

 

 

Fig. 1(b) Particle Size Distribution of Pb Powder 
 

 Samples are withdrawn from the ball mill after 

45 min. of continuous run and subjected to 

compressibility test. The compressibility test is carried 

out on a hydraulic press using one set of die and punches 

that conform to cylindrical shape of test sample with 1 
inch diameter. For the purpose of compressibility test, the 

lower punch is inserted into the die and the assembly is 

placed on the lower platen of the hydraulic press. Using 

supporting spacers which may be wooden blocks, the die 

is raised so that the depth of powder fill will be proper to 

give a green compact height equal to the compact 

diameter + or – 10%.The powder depth varies with the 

particular powder used, and was determined empirically. 

Sufficient quantity of alloy powder is poured into the die 

cavity to fill it to overflowing. Then, the powder is 

leveled off flush with the top of the die by passing the 

straight edge of the spatula horizontally across the die 
top. The die is tapped a little to make the powder level 

settle slightly below the die top. The upper punch is 

positioned so that it rests in the die and on top of the 

powder.  A preliminary force of 0.2 Kgf is applied and 

then removed, after which the spacers are removed. Then, 

a force of 500Kgf is applied, building up to this amount 

at a constant rate of loading. The applied force is 

gradually withdrawn and the green compact is ejected by 

use of a die push – down spacer placed between the die 

top and the bottom of the platen above it.  Subsequently, 

the height of the green compact is measured, to calculate 
the volume of the green compact.  The weight of the 

compact is determined to the nearest 0.001 gram, to 

calculate the green density of the compact.  These steps 

are repeated, using appropriately larger amounts of 

powder and final compacting forces of 1,000, 1,500, 

2,000, 2,500,   3,000, 3,500,   4,000, 4500 kgf etc. The 

compressibility test results of Al-Pb alloys are shown in 

Table 2.  

 

3. Modeling of Densification Behavior 

3.1 Model selection 
 Given a set of data points, from the 

compressibility test, the data is fitted to a model in the 

form of a parametric equation. One important 

consideration in selecting an appropriate model is the 
underlying law that the data represents.  Optimally, the 

model should be chosen to reflect that law so that the 

parameters in the curve fit have physical interpretation 

and meaning. In the work presented here, the nonlinear 

models known as the sigmoidal family models are 

selected based on the nature of the experimental data.  

        The sigmoidal or "S-shaped" growth curves 

(namely Gompertz Model, Logistic Model, Richards 

Model, MMF Model and Weibull Model) start at a fixed 

point and increase their growth rate monotonically to 

reach an inflection point.  After this, the growth rate 

approaches a final value asymptotically. These five 

models are fitted to the experimental data pertaining to 

various compositions of Al-Pb alloys made by 
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conventional ball milling, at two different ball to charge 
ratios. The ball to charge ratios used in the experiments 

are selected based on general engineering practice for 

such applications as well as the volume capacity of the 

attrition mill.  

 

3.2 Solution methodology 
 This program uses the Levenberg-Marquardt 

method to solve nonlinear regression.  This method 

combines the steepest-descent method and a Taylor series 

based method to obtain a fast, reliable technique for 

nonlinear optimization.    The Levenberg-Marquardt 

(LM) algorithm allows for a smooth transition between 
these two methods as the iteration proceeds. In general, 

the data modeling equation (with one independent 

variable) can be written as follows: 

 
                       Y=Y(x, ā)    (1) 

 

 The above expression simply states that the 

dependent variable y can be expressed as a function of 

the independent variable x and vector of parameters a of 

arbitrary length.  Note that using the ML method, any 

nonlinear equation with an arbitrary number of 

parameters can be used as the data modeling equation.  

Then, the “merit function” we are trying to minimize is  

  
                                  N 

                      χ2(ā) = Σ [( Yi-Y(Xi, ā)) /σi]
 2  (2) 

                                  i=1 

 

Where N is the number of data points, xi 

denotes the x data points, yi denotes the y data points, σi 
is the standard deviation (uncertainty) at point i, and 

y(xi,a) is an arbitrary nonlinear model evaluated at the ith 

data point.  This merit function simply measures the 

agreement between the data points and the parametric 

model; a smaller value for the merit function denotes 

better agreement.  This merit function is also called as the 
chi-square. The Taylor series method states that 

sufficiently close to the minimum, the function can be 

approximated as a quadratic.  Without detailed 

explanation of that method, a step from the current 

parameters ā cur    to the best parameters ā min can be 

written as  

 

                     ā min  =ā cur  +H-1   [- χ2 (ā cur  )]  (3) 

 

Where H is the Hessian matrix (a matrix of 

second derivatives).  If the approximation of the function 

as a quadratic is a poor one, then we might instead use 

the steepest-descent method, where a step to the best 

parameters from the current parameters is  

 

                ā min  = ā cur  - C  χ2 (ā cur  )  (4) 

 This equation simply states that the next guess 

for the parameters is a step down the gradient of the merit 

function.  The constant C is forced to be small enough 

that a small step is taken and the gradient is accurate in 

the region that the step is taken.  

Since we know the chi-square function, we can 

directly differentiate to obtain the gradient vector and the 
Hessian matrix.  Taking the partial derivatives of the 

merit function with respect to a gives 

 
∂χ2                  N       Yi – Y(xi ; ā)            ∂Y(xi ; ā)  

___     =    -2  Σ    [    ________        .      _______     ] (5) 

∂a k                         i=1                      σi  
2                     ∂ a k    

                                  
 

To obtain the Hessian matrix, take the gradient 

of the gradient above (so that we have a matrix of partial 

second derivatives) 
 
∂χ2         N  1   ∂Y(xi ; ā)  ∂Y(xi ; ā)   Yi–Y(xi ; ā)    ∂2Y(xi ; ā)  

____=-2Σ[ __ . ______    _______ -   _______        _________  ] 
∂ak∂al   i=1   σi

2
        ∂ a k    

      ∂al                         σi  
2          ∂ak∂al              

        

(6) 

Now, for convenience, define the gradient 
vector and the curvature matrix as 

 
             1  ∂χ2          N     Yi – Y(xi ; ā)         ∂Y(xi ; ā) 

GK   = -_ ___=        Σ    [ _________    .    ________     ] (7) 

             2  ∂a k            i=1            σi  
2                      ∂ a k  

 

 
          ∂2χ2         N       1      ∂Y(xi ; ā)       ∂Y(xi ; ā) 

Ckl =  ____  =   Σ  [  ___  .  ________  .    _______  ] (8) 

        ∂a k∂al         i=1     σi  
2

        ∂ a k                ∂al     
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Table 2:  Compressibility test results of conventional ball milled Al-Pb alloys 

 

Pressure  

Mpa 

                                                                              Density (Gr/Cm3) 

95Al-5Pb  
alloys 

90Al-10Pb 
alloys 

85Al-15Pb  
alloys 

80Al-20Pb  
alloys 

75Al-25Pb  
alloys 

  BCR 
= 5:1 

BCR 
=10:1 

 BCR 
= 5:1 

 BCR 
=10:1 

BCR 
= 5:1 

BCR 
=10:1 

 BCR 
= 5:1 

 BCR 
=10:1 

 BCR 
= 5:1 

BCR 
= 10:1 

10 1.312 1.575 1.669 1.673 1.752 1.735 1.865 1.804 1.808 1.988 

20 1.389 1.60 1.713 1.730 1.807 1.779 1.932 
 

1.886 1.839 2.054 

30 1.425 1.629 1.754 1.784 1.847 1.851 1.990 1.964 1.979 2.103 

40 1.498 1.677 1.819 1.856 1.945 1.928 2.046 2.028 2.015 2.162 

50 1.538 1.738 1.872 1.918 2.011 2.003 2.099 2.097 2.103 2.259 

60 1.605 1.798 1.947 1.992 2.052 2.048 2.168 2.204 2.174 2.335 

70 1.649 1.851 1.993 2.037 2.106 2.135 2.226 2.273 2.25 2.406 

80 1.699 1.89 2.05 2.103 2.179 2.203 2.293 2.327 2.307 2.472 

90 1.715 1.949 2.105 2.152 2.237 2.25 2.348 2.386 2.361 2.541 

100 1.765 2.034 2.155 2.146 2.287 2.323 2.401 2.455 2.429 2.589 

110 1.809 2.039 2.189 2.269 2.319 2.363 2.489 2.491 2.492 2.637 

120 1.867 2.059 2.264 2.292 2.372 2.413 2.559 2.541 2.571 2.677 

 

 

Table 3: A Comparison of Densification Models for Ball milled Al-Pb Alloys  

Sl.No. Alloy 

composition 

Densification Model Coefficients Standard 

error (S) 

Coefficient of 

correlation (r) 

Comments 

1. 95Al-5Pb 

(ball to charge 

ratio=5:1) 

 

Gompertz Relation:  

 y=a*exp(-exp(b-cx)) 

a = 2.384449, 

 b = -0.446123,  

c = 0.00774622 

 

0.01196878 

 0.99809979 The fit converged to a tolerance 

of 1e-006 in 30 iterations. No 

weighting used 

Logistic Model:   

y=a/(1+b*exp(-cx)) 

a = 2.2470045,   

b =  0.7827956,        

 c = 0.0108170 

0.0122433 0.9980115 The fit converged to a tolerance 

of 1e-006 in 12 iterations. No 

weighting used 

MMF Model: 

y=(a*b+c*x^d)/(b+x^d) 

 

a = 1.233188, 

b = 411.95285,  

 c = 5.8028301. 

0.0121162 0.9982692 The fit converged to a tolerance 

of 1e-006 in 26 iterations. No 

weighting used. 

Weibull Model:    

y=a-b*exp(-c*x^d) 

 

a = 3.0046159,  

b =  1.7624897,  

c = 0.0049914,   

d =  0.9286785 

0.0122362,  

 

0.9982347,                              The fit converged to a tolerance 

of 1e-006 in 100 iterations. No 

weighting used. 

2. 95Al-5Pb 

(ball to charge 

ratio=10:1) 

Logistic Model:  

y=a/(1+b*exp(-cx)) 

 

a = 3.4394767,   

b = 1.2909257,    

c = 0.0057404523 

0.0215148 

 

0.9939606 

 

The fit converged to a tolerance 

of 1e-006 in 55 iterations. No 

weighting used. 

Richards Model:  

y=a/(1+exp(b-cx)^(1/d)) 

a = 2.052706, 

b = 39.213857,  

c = 0.3657327,  

d = 126.89219 

0.0153676 0.9972656 The fit converged to a tolerance 

of 1e-006 in 23 iterations. No 

weighting used. 

3. 90Al-10Pb 

(ball to charge 

ratio=5:1) 

 

Logistic Model: 

y=a/(1+b*exp(-cx)) 

a = 3.5803115,   

b = 1.2340121,  

c = 0.00621108 

0.0103343 0.9988791 

. 

The fit converged to a tolerance 

of 1e-006 in 51 iterations. No 

weighting used.  

Richards Model:  

y=a/(1+exp(b-cx)^(1/d))     

 

a = 2.502839,  

 b = 4.1727808,   

c = 0.0303377,   

d = 9.4789474 

0.0104810, 

 

 

 

0.9989752, 

 

The fit converged to a tolerance 

of 1e-006 in 18 iterations. No 

weighting used 

4. 

 

 

90Al-10Pb 

(ball to charge 

ratio=10:1) 

Gompertz Relation:  

y=a*exp(-exp(b-cx)) 

 

a =  3.1580973,   

b = -0.3842547,   

c =  0.0062701 

0.0201725 

 

0.9960780 

 

The fit converged to a tolerance 

of 1e-006 in 48 iterations. No 

weighting used. 
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Logistic Model: 

y=a/(1+b*exp(-cx)) 

 

a = 2.9138955,   

b = 0.82027625,   

c =  0.009190747 

0.0201681 

 

0.9960797 

 

The fit converged to a tolerance 

of 1e-006 in 22 iterations. No 

weighting used. 

MMF Model: 

y=(a*b+c*x^d)/(b+x^d) 

 

a = 1.6156402,  

 b = 582.20585,  

 c = 3.7683579,  

 d = 1.165871 

0.0211842 

 

0.9961554 

 

The fit converged to a tolerance 

of 1e-006 in 87 iterations. No 

weighting used. 

Weibull Model:  

y=a-b*exp(-c*x^d) 

 

a = 3.0148363, 

b = 1.4017246, 

c = 0.0030244, 

d = 1.1247359 

0.0212466 

 

0.9961327 

 

The fit converged to a tolerance 

of 1e-006 in 86 iterations. No 

weighting used. 

5. 

 

 

 

 

 

 

85Al-15Pb 

(ball to charge 

ratio = 5:1) 

 

 

 

 

 

 

Gompertz Relation: 

 y=a*exp(-exp(b-cx)) 

a = 3.2529345, 

b =  -0.406826,  

c = 0.00625533 

0.0129936 

 

0.9984171 

 

The fit converged to a tolerance 

of 1e-006 in 50 iterations. No 

weighting used. 

Logistic Model: 

y=a/(1+b*exp(-cx)) 

a = 3.0062812,   

b = 0.7961878,  

c = 0.00913700 

0.0127534 

 

0.9984751 

 

The fit converged to a tolerance 

of 1e-006 in 22 iterations. No 

weighting used. 

Richards Model: 

y=a/(1+exp(b-cx)^(1/d)) 

 

a = 2.4995539,   

b = 3.9725305,  

c = 0.0355696,  

d = 10.166325 

0.0127354 0.9986485, The fit converged to a tolerance 

of 1e-006 in 58 iterations. No 

weighting used. 

MMF Model: 

y=(a*b+c*x^d)/(b+x^d) 

 

a = 1.7178972,   

b =   1165.7997,  

 c =   3.0707762,   

d = 1.4597335 

0.0122039 0.9987590 The fit converged to a tolerance 

of 1e-006 in 55 iterations. No 

weighting used. 

Weibull Model:  

y=a-b*exp(-c*x^d) 

 

a = 2.6826822,   

b =  0.9699176,  

c = 0.0017231,  

d = 1.3545622.  

0.0122700 

 

   0.9987455 

 

The fit converged to a tolerance 

of 1e-006 in 97 iterations. No 

weighting used.  

 

6. 

 

 

85Al-15Pb 

(ball to charge 

ratio = 10:1) 

Gompertz Relation: 

 y=a*exp(-exp(b-cx)) 

a = 3.5461106,  

b = -0.2639019,  

c = 0.0058341195.  

0.0117797 0.9989389 The fit converged to a tolerance 

of 1e-006 in 58 iterations. No 

weighting used. 

Logistic Model: 

 y=a/(1+b*exp(-cx)) 

 

a =  3.187259,  

 b = 0.93490289,   

c = 0.009019316. 

0.0113370 

 

0.9990172 

 

The fit converged to a tolerance of 1e-006 

in 26 iterations. 

 No weighting used. 

Richards Model:  

y=a/(1+exp(b-cx)^(1/d)) 

 

a =2.5348328,  

b = 4.7052507,  

c = 0.041548986,  

d = 11.198612 

 

0.0097946 

 

0.9993480 

 

The fit converged to a tolerance of 1e-006 

in 12 iterations.  

No weighting used. 

MMF Model: 

 y=(a*b+c*x^d)/(b+x^d) 

 

a = 1.7023093,  

 b = 1656.6775,  

c =  3.1262541,  

d =1.5479796.  

 

0.0089810 

 

0.9994519 

 

The fit converged to a tolerance of 1e-006 

in 57 iterations. No weighting used. 

7.  

 

 

 

80Al-20Pb 

(ball to charge 

ratio= 5:1) 

Richards Model:  

y=a/(1+exp(b-cx)^(1/d)) 

a = 3.0297479,   

b =  8.0406403,   

c =  0.0450205,  

d = 15.827954 

0.0086652 0.9994509 The fit converged to a tolerance 

of 1e-006 in 25 iterations. No 

weighting used 

8. 

 

 

80Al-20Pb 

(ball to charge  

ratio = 10:1) 

Gompertz Relation:  

y=a*exp(-exp(b-cx)) 

a = 3.2166758,  

b = -0.45728495,  

 c = 0.0083337461 

0.0124989 

 

0.9989550 

 

The fit converged to a tolerance 

of 1e-006 in 26 iterations. No 

weighting used. 

Logistic Model:  

y=a/(1+b*exp(-cx)) 

 

a =  3.0373077,   

b =  0.77418514,  

 c =  0.011594177 

0.0118826 

 

0.9990556 

 

The fit converged to a tolerance 

of 1e-006 in 12 iterations. No 

weighting used. 

Richards Model:  

y=a/(1+exp(b-cx)^(1/d)) 

 

a = 2.655366,  

b = 3.572541,   

c = 0.035945342,   

d = 8.4353705 

0.0105830 0.9993342 

 

The fit converged to a tolerance of 1e-006 

in 38 iterations. No weighting used. 

 

MMF Model: 

 y=(a*b+c*x^d)/(b+x^d) 

 

a =  1.7659829,  

b =  955.60305,   

c = 3.2247146,  

d = 1.4610421 

0.0111686 

 

0.9992584 

 

The fit converged to a tolerance of 1e-006 

in 70 iterations.  

No weighting used. 

 

9.  

 

75Al-25Pb 

(ball to charge 

ratio = 5:1) 

Richards Model:  

y=a/(1+exp(b-

cx)^(1/d)) 

a =4.9266647,  

 b = 11.310197,   

c =0.03941985,  

0.0467050 

 

0.9906603 

 

The fit converged to a tolerance 

of 1e-006 in 84 iterations. No 

weighting used. 



Journal of Manufacturing Engineering, December 2009, Vol. 4, Issue 4, pp 264-273 
    

© SME 269 

 d =10.866504 

10. 

 

 

 

 

 

75Al-25Pb 

(ball to charge 

ratio = 10:1) 

 

 

 

Logistic Model: 

y=a/(1+b*exp(-cx))    

a =3.4197151,  

b =  0.8057931,  

c =0.00911015 

0.0161802 0.9981114 

 

The fit converged to a tolerance 

of 1e-006 in 24 iterations. No 

weighting used. 

Richards Model:  

y=a/(1+exp(b-cx)^(1/d)) 

 

a =2.7211645,  

b = 6.9937057,   

c = 0.0653764,   

d =19.944137 

0.0105317 

 

0.9992892 

 

The fit converged to a tolerance 

of 1e-006 in 4 iterations. No 

weighting used 

MMF Model: 

y=(a*b+c*x^d)/(b+x^d) 

 

a =1.9794184,  

b = 5436.2893,  

c = 3.0548515,  

d =  1.9267836 

0.0082975 

 

0.9995588 

 

The fit converged to a tolerance 

of 1e-006 in 76 iterations. No 

weighting used. 

 

Gompertz Relation:  

y=a*exp(-exp(b-cx)) 

 

a =3.7220418,  

b = -0.3906493,  

c = 0.0061553974, 

0.0167863 0.9979672 

 

The fit converged to a tolerance 

of 1e-006 in 50 iterations. No 

weighting used. 

 
 

Table 4:  A Comparison between Best Fit Densification Models for Al-Pb Alloys  

 

Sl.No. Composition of Alloys 

Particulars of best fit Densification Models 

By min. value of Std. error (S) 

By max. value of Coeff.of 

correlation ( r ) 

1 95Al-5Pb (ball  to charge 

ratio=5:1) 

Gompertz Relation:    

S=0.01196878 

MMF Model: r = 0.9982692 

2 95Al-5Pb (ball to charge 

ratio=10:1) 

Richards Model: S = 0.0153676 Richards Model: r = 0.9972656 

3 90Al-10Pb (ball to charge 

ratio=5:1) 

Logistic Model: S= 0.0215148 Richards Model: r = 0.9989752 

4 90Al-10Pb (ball to charge 
ratio=10:1) 

Logistic Model: S= 0.0201681  MMF Model:   r =0.9961554 

5 85Al-15Pb (ball to charge 

ratio=5:1) 

MMF Model: S= 0.0122039 Weibull Model:   r = 0.998745 

6 85Al-15Pb (ball to charge 

ratio=10:1) 

MMF Model: S =0.0089810 Logistic Model:  r = 0.9990172 

7 80Al-20Pb (ball to charge 

ratio=5:1) 

Richards Model: S = 0.0086652 Richards Model: r = 0.9994509 

8 80Al-20Pb (ball to charge 

ratio=10:1) 

Richards Model: S = 0.0105830 Richards Model: r = 0.9993342 

9 75Al-25Pb (ball to charge 

ratio=5:1) 

Richards Model: S=0.0467050 Richards Model: r =0.9906603 

10 75Al-25Pb (ball to charge 

ratio=10:1) 

MMF Model: S = 0.0082975 MMF Model:  r =0.9995588 
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Table 5: Validation of Richards Model-Stage-I  

(a) Conventional Ball Milled 95Al-5Pb Alloys     

                                                          

                                                                                                                                                     

     

 

 

 

 

 

                                            

                                                

 

(b) Conventional Ball Milled 90Al-10Pb Alloys 

  

 

 

 

 

 

 

 

                                         

                                                   
 

 

(c) Conventional Ball Milled 80Al-20Pb Alloys 

                                          

                                                    

(d) Conventional Ball Milled 75Al-25Pb Alloys 

 

 

 

 

 

 

 
                               

                                    

                                                    

 

 

 

 

Compaction 

pressure(MPa) 

Density (Gr/ Cm3) 

Ball to charge ratio =5:1 

 Experimental value Model predicted value      Deviation(%) 

130 2.29450 2.29685 0.102419 

140 2.32395 2.33054 0.521027 

150 2.36632 2.36875 0.102691 
160 2.39467 2.39703 0.098552 

170 2.41795 2.42042 0.102153 

Compaction 

pressure 

(MPa) 

Density (Gr/ Cm3) 

Ball to charge ratio = 10:1 

 Experimental Value Model Predicted Value           Deviation (%) 

 

130 2.04709 2.05270 0.274048 

140 2.04720 2.05271 0.269148 

150 2.04720 2.05271 0.269148 

160 2.04720 2.05271 0.269148 

170 2.04720 2.05271 0.269148 

Compaction 

pressure 

 (MPa) 

Density (Gr/ Cm3)                   

Ball to charge ratio =5:1 Ball to charge ratio = 10:1 

Experimental 

value 

Model predicted 

value 

        %  

 Deviation 

Experimental 

value 

Model predicted  

value 

       %  

   Deviation 

130 2.60949 2.62093    0.43840 2.55947 2.56647 0.273494 

140 2.66559 2.68707 0.80582 2.60870 2.59042 -0.700730 

150 2.72886 2.75037 0.78824 2.62008 2.60848 -0.442730 

160 2.80743 2.80907 0.05842 2.62674 2.62183 -0.186920 

170 2.85934 2.86131 0.06889 2.62979 2.63154 0.066545 

Compaction  

Pressure (MPa) 

Density (Gr/ Cm3) 

Ball to charge ratio =5:1 

Experimental value    Model predicted value Deviation (%) 

130 2.77171 2.78775 0.578704 

140 2.88348 2.89048 0.242762 

150 2.98876 2.99685 0.270681 

160 3.09792 3.10694  0.291163 

170 3.21065 3.22076 0.314890 
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Table 6: Validation of Richards Model -Stage-II 

                                

Compaction 

Pressure(MPa) 

Density (Gr/Cm3) 

Experimental 

value 

     Value predicted by  

Hyperbolic cap model by 

Lee and Kim 

     % 

Deviation 

Value predicted 

by Richards 

model 

     % 

Deviation 

20 1.674 1.661 -0.77658          1.674 0.00000 

50 1.809 1.809     0.00000          1.807  -0.11056 

70 1.890 1.890 0.00000 1.891 0.05291 

100 1.998 2.025 1.35135 1.997 -0.05005 

 

 
 It can be noted that the second derivative term 

in C will be ignored because of two reasons:  it tends to 

be small because it is multiplied by (y-yi), and it tends 

to destabilize the algorithm for badly fitting models or 

data sets contaminated with outliers.  This action in no 

way affects the minimum found by the algorithm; it only 

affects the route in getting there. So, the Taylor series 

method (inverse Hessian method) can be written as the 

following set of linear equations: 

 

            NP 
             Σ  Ckl. δal=  Gk                                                  (9) 

             k=1 
 

Where, NP is the number of parameters in the 

model that is being optimized.  This linear matrix will 

be our workhorse for this method after some 

modification; it can be solved for the increments δa that, 

when added to the current approximation for the 

parameters, gives the next approximation.  Likewise, we 

can substitute our "convenient" definitions into the 

steepest descent formula to obtain 

 

              δal=c.Gal                                                  (10) 

 
 The steepest descent method works best far 

away from the minimum and the Taylor series method 

works best close to the minimum.  The Levenberg-

Marquardt (LM) algorithm allows for a smooth 

transition between these two methods as the iteration 

proceeds. The first issue in deriving the LM method is to 

attach some sort of scale to the constant c in the 

steepest-gradient method (equation 10).  Typically, there 

is no obvious way to determine this number, even within 

an order of magnitude.  However, in this case, we have 

access to the Hessian matrix; examining its members, 

we see that the scale on this constant must be 1/Cll.  
But, that still may be too large, so let's divide that scale 

by a non-dimensional factor (l) and plan on setting this 

much larger than one so that the step will be reduced 

(for safety and stability). The second issue to formulate 

the LM method is noting that the steepest-descent and  

 

 

 
Taylor series methods may be combined if we define a 

new matrix    Mij by the following 

 
                                 Mii  =  Cii (1+ λ) 

                                 Mij  =  Cij ,    i  ≠ j 

 

 This matrix combines equations (9) and (10) 
into a convenient and compact form.  So finally, we 

have a means of calculating the step δa in the parameters 

by the following system of linear equations 
                   

                    Np 

                  Σ Mkl. δal   =Gk                                             (11)                       

K=1  

                 

  Note that when λ is large, the matrix M is 

forced to be diagonally dominant; consequently, the 

above equation is equivalent to the steepest descent 

method (equation 10).  Conversely, when the parameter 
λ goes to zero, the above equation is equivalent to the 

Taylor series method (equation 9).  So, λ is varied to 

switch between the two methods, continually calculating 

a parameter correction da that we apply to our most 

recent guess for the parameter vector.  The steps that are 

taken in the LM algorithm are as follows 

1. Compute χ2(a) 

2. Pick a conservative value for λ (0.001) 

3. Solve the linear equations (equation 3) for δa 

4. Evaluate χ2(a+δa) 

5. If χ2(a+δa) >= χ2(a), increase λ  by a factor (10) and 
go back to step [3]. 

6. If χ2(a+δa) < χ2(a), decrease λ  by a factor (10), 

correct the parameter vector by a=a+δa, and go back to 

step [3]. 

  Iteration is stopped when | χ2(a+δa) - χ2(a)| < 

tolerance.  This tolerance is the value specified for 

regression convergence.  The non-linear algorithm uses 

this number to determine whether or not it has 

converged on the correct modal parameters. The 

difference between the standard errors in two 

consecutive iterations must be smaller than this 

tolerance for the computation to terminate. The smaller 
the tolerance, the more accurate the parameters will be,  
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but the algorithm will take more time to converge.   In 

this work, the value of tolerance considered is 1m.   

 For the models under consideration, the 

Coefficients, Covariance, Residuals, Coefficient of 

correlation and Standard error of estimate are computed.  

The performance of a curve fit is judged by two 

quantities - the correlation coefficient and the standard 

error of the estimate.  In general, the correlation 

coefficient will range from 0 to 1, with a value of 1 

being the best.  For the alloys under consideration, the 

converging mathematical models are tabulated, for ball 

milled Al-Pb alloys in Table 3. The best fitting 

mathematical models are compared for five 
compositions of Al-Pb alloys and at two ball to charge 

ratios (BCR), in Table 4, based on maximum value of 

coefficient of correlation and minimum value of 

standard error of estimate.  

From the results presented in Table 4, it can 

be observed that Richards model emerged as the best fit 

model, for a good number of the ball milled alloys, 

satisfying maximum value of coefficient of correlation 

and minimum value of standard error of estimate.  

 

4. Validation of Densification Model 

 The best fitting densification model (i.e. 

Richards Model) is validated in two stages. In the first 

stage, validation is taken up by considering the data 

outside the range of experimentation, in the present 

study. The results of first stage validation are presented 
in Table 5(a) to (d). It can be observed from these tables, 

that in case of ball milled alloys,  the  deviation between 

model predicted values and experimental values of 

density varied from – 0.7%  to 0.8%.  

 In the second stage, validation of Richards 

model is taken up by considering the experimental data 

generated from the presentations by Lee and Kim [1] on 

Aluminum alloys in cold compaction, under similar test 

conditions as the ones used in this work. The results 

obtained in this validation of Richards model are 

compared with the values predicted by the hyperbolic 
cap model developed by Lee and Kim. On the basis of 

the comparison shown in Table 6, it can be observed 

that the deviation between experimental values 

considered and predicted values due to Lee and Kim is 

in the range of -0.776% to 1.351%. Whereas the 

deviation observed with Richards model is in the range 

of -0.11% to 0.05%. This clearly demonstrates that for 

the composition of Al-Pb alloys and particle distribution 

considered in the present work, Richards model 

effectively predicts the density values as a function of 

applied compaction pressure. 

 
 

5. Discussion  

 Powder metallurgical processing quite often 

yields materials containing a substantial amount of 

residual porosity along particle boundaries. Successful 

utilization of the process, therefore, needs careful 

control of the deformation, elimination of flash 
formation and, perhaps the most important, proper 

densification.  
 

 Theories describing the deformation of porous 

material are enumerated and the changes in density in 

powder forming process are analyzed with the help of a 
theoretical and numerical analysis by Bruhns and 

Sluzalec [2] to model the densification behaviour of 
porous materials.  

 These models [3-5] may not be appropriate for 

the early stage of compaction response, in view of the 
fact that the inter-particle cohesion of loose powder 

compact is much less. Out of several models developed 

in the past, the hyperbolic cap model proposed by Lee 

and Kim [1] agreed well with the experimental data in 

the overall density region under cold compaction of 

Aluminum alloy powder. Since, the processing 

parameters such as composition, particle distribution, 

ball to charge ratio, compaction pressure etc., will 

exhibit significant influence on densification behaviour, 

it is very important to develop densification models for 

the alloys under consideration, validate them and then 

use them to predict appropriate compaction pressure, so 
as to successfully implement P/M processing.  
 

 In this work, the modeling of compressibility 

test data is carried out by using non-linear regression 

algorithm, fitting five different sigmoidal models, for 
various compositions of ball milled and attrition milled 

alloys separately. Based on the results presented in 

Table-6, it can be concluded that Richards model 

emerged as the best fit model, for a good number of ball 

milled alloys satisfying maximum value of coefficient of 

correlation and minimum value of standard error of 

estimate. Further, this model is validated considering the 

data outside the range of experimentation and found to 

predict density, within ± 1 % for ball milled alloys. This 

is also confirmed by validating Richards model with the 

data generated from the presentations by Lee and Kim 
(2002) on Aluminum alloys in cold compaction. This 

approach is found quite helpful in deciding the 

compaction pressure for powder metallurgical 

processing of Al-Pb alloys of various compositions, 

where there are a number of variants influencing 

densification behaviour. 
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