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ABSTRACT      
Dimensional inspection of a manufactured surface by means of a coordinate measuring 

machine (CMM) produces a set of Cartesian coordinates of points. The coordinates are processed to 
yield the geometric deviations of the manufactured surface from the nominal one. This paper presents a 
new approach to the evaluation of flatness, cylindricity and sphericity tolerance based on surface 
invariance with regard to the rigid motions. The proposed algorithm transforms the coordinates 
measured, through homogeneous transformation matrices, in order to best fit the reference element 
(datum) of the class of the surface from which the actual measurements were sampled. The 
methodology was computer implemented, and numerical simulations were performed to validate the 
effectiveness of the approach. Compared with the form tolerance a priori known of the used datasets, 
the obtained results indicate that the proposed algorithm provides accurate and quick assessments. 
 
Keywords: Geometric Dimensioning and Tolerancing (Gd&T), Geometric Product Specification 
(GPS), Homogeneous Transformation Matrix, Reference Element, Continuous Subgroups Of Rigid 
Motion. 

 
 
1. Introduction 
      As industry strives towards the increase of 
product quality, the effects of machining errors on a 
workpiece need to be notably reduced. This is critical for 
the manufacturing processes in order to achieve the 
needed workpiece accuracy. After the machining, it is 
necessary to verify if unwanted kinematics troubles 
carried out manufacturing errors in terms of dimensional 
or geometrical variations of the designed shape. The 
traditional inspection method of a manufactured part 
implies several steps: from the inspection plan design 
with the selection of number and position of sample 
points to the measurement process, to the identification 
of an ideal geometric element with known analytical 
expression that best fits the measured data. Several fitting 
techniques can be used to determine the substitute 
geometry, such as the Least Square Method, the 
Minimum Zone, etc. The final step is the comparison of 
the evaluated deviations with the imposed tolerances, 
thus accepting or rejecting the manufactured part. 
     GPS standards are evolving towards innovative 
concepts for classification of surfaces, their reduction to 
simpler geometric elements that preserve the 
classification, serve as datum and as a rationale to 
parameterize the relative position of geometric entity  

 
 
[1-3]. This implies a surface classification based on 
continuous symmetry of geometric objects. This 
classification is founded on twelve connected Lie 
subgroups of rigid motion that led to a compact 
classification of surfaces in seven classes based on their 
symmetry and invariance with regard to the rigid motions 
[4-7]. This paper is the first attempt at integrating these 
principles into a new algorithm for form tolerance 
assessment. 
      According to the standards [8, 9] of geometric 
tolerance, a tolerance applied to a feature of a mechanical 
part creates a 3D portion of space (the tolerance zone), 
where the feature may be found, and whose geometry, 
size, position and orientation are specified through the 
type of geometric tolerance assigned, its value and the 
datum system chosen, respectively. 

      The conformance of the manufactured parts to 
the design specifications is evaluated during the 
inspection phase. In dimensional inspection CMM, once 
extracted from the real integral feature a finite set of 
sampled points coordinates, generates what is called the 
extracted integral feature. The extracted integral feature 
is elaborated to calculate the associated integral feature 
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(even called substitute feature [10]), i.e. the nominal 
feature that best fits the extracted integral feature, and the 
corresponding associated derived feature. The deviations 
of the measured points from the associated integral 
feature are finally evaluated to yield the form tolerance. 
For example, to evaluate the straightness error an ideal 
straight line has to be established from the actual 
measurement by minimizing, through the choice of a 
suitable objective function, the maximum deviation 
between it and the extracted integral feature concerned. 
The form error is, then, computed as the maximum 
peak-to-valley distance of the measured points from the 
associated integral feature. The position error of the 
actual feature is derived from the estimated parameters of 
the substitute feature. 

      In previous works different objective functions 
were proposed: sum of the squares of deviations [11], 
sum of the squares of normal deviations [11, 12], sum of 
absolute deviations [13, 14], average deviations [13]. 
The minimization was carried out based on either direct 
or random search techniques, Monte Carlo simulation, 
simplex search or spiral search techniques. In recent 
years, a new class of algorithms for the establishment of 
form tolerance has received much attention [15-21]. This 
new class, instead of a substitute feature, directly 
searches the minimum zone of the feature under 
inspection. For example, in flatness assessment, two 
parallel planes with minimum distance including the 
whole cloud of measured points are searched. This 
method best conforms the ISO standards that define the 
form tolerance by means of a tolerance zone within 
which the feature is to be contained. However, this kind 
of algorithms is very sensitive to asperities, while the 
methods minimizing an objective function are much less 
sensitive to asperities and they are mathematically robust 
[22]. 
      This paper presents a new theoretical approach 
for the assessment of form tolerances by sampling a set 
of measured points. The proposed approach is based on 
the new concepts under development by the ISO/TC 213; 
in particular, on the classification of surfaces into seven 
classes of symmetry. Instead of searching for the best fit 
substitute feature, the proposed method transforms, 
through homogeneous transformation matrices, the 
coordinates measured in order to best fit the reference 
element of the class of the surface from which the actual 
measurements were sampled. The best fitting 
transformation matrix is found by means of the 
minimization of the sum of the squared normal distances 
of the points measured from the reference element of the 
class to which the nominal integral feature under 
inspection belongs. The transformation matrix is 
simplified taking into account the invariance of the sum 
of the squared normal distances of the measured points 

from the nominal surface. This invariance is a 
consequence of the invariance as regards some 
displacements of the nominal surface, and subsequently 
of its datum. In this way, the number of parameters to be 
optimized is reduced in comparison with the six 
parameters characterizing the general homogeneous 
transformation matrix in 3D. This theoretical approach 
was implemented into numerical algorithms for the 
assessment of the flatness, cylindricity and sphericity 
tolerances. The new algorithms were tested on both 
simulated data sets and data reported in literature. In the 
following the problem of form tolerance assessment is 
introduced (Section 2). Then, the proposed algorithm is 
mathematically described (Section 3) and applied to 
flatness (Section 3.1), cylindricity (Section 3.2) and 
sphericity (Section 3.3) assessment. Finally, the 
performances of the proposed algorithm are discussed by 
means of different sets of data (Section 4). 
 
2. Traditional Approach to Form 
Tolerance Assessment 
       

The algorithms for the evaluation of the form 
tolerance found in the literature search for a substitute 
feature, i.e. a feature of the same geometric nature of the 
surface from which the measurements were sampled. 
The substitute feature minimizes the deviation between 
itself and the extracted integral feature. 

In general form, an ideal surface can be express 
as a set of points: 

 
    1  n ,n,n,n:,n,n,nW zyx

T
zyx

   0   and  sn,w ,                  (1) 
 
Where w is a C1 function that represents the equation of 
the nominal surface specified in implicit form. 
      The function  sn,w  contains internally the set 
of parameters s  that characterize position, orientation 
and size of the feature. For example, w for a sphere is: 
 
      22

0
2

0
2

0 Rzzyyxx  ,                (2) 
 

Where the feature parameters are:  000 z,y,x  
that individualizes the position of the sphere centre and R 
that specifies its size. w is a C1 class function when the 
nominal feature is almost regular (i.e. the normal to the 
surface at any surface points exists). These types of 
surfaces are called CMM measurable. 

      The extracted integral feature is also 
represented by a set of points: 
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   1  ziyixi
T

ziyixim r,r,r:,r,r,rW ir                (3) 
 
Where ir is the ith actual measurement of the m measured 
points. 
     The vectorial relationship between the measured 
points and the substitute feature is: 
 

iii εnr                    (4) 
 
Where  Tziyixi ,n,n,n 1in  is the point on the nominal 
surface such that ii nr   is coincident with the surface 
normal direction. iε  represents the feature error 
evaluated along the surface normal direction at the point 

in . It is the sum of two elementary errors: measurement 
and the manufacturing errors. 
      At this step the methods proposed in the 
literature proceed in search of the set of substitute feature 
parameters, s , by minimizing the deviation between the 
substitute feature and the extracted integral feature 
through the minimization of an objective function, that  
usually has the following expression [16]: 
 

    
2

1
2 




m

i
L sεs i                                (5) 

 
This function is easily recognized as the 

optimization function of the normal least squares. 
Statistically, the least squares fit is the maximum 
likelihood estimation assuming normally distributed 
errors [23]. An alternative method proposed by Goch 
[24] is based on a general Lp norm. Using an L2 norm for 
the optimization objective function means to implement 
the least squares fitting; while an L∞ norm (Chebyshev 
norm) means to implement a min-max fit. Goch showed 
that as the value of p in Lp increases, the fitting algorithm 
asymptotically approaches a min-max fit. 
      The minimization of the chosen objective 
function with respect to the s  parameters is in general a 
complex non-linear problem, so the objective function 
usually is linearized to find the solution directly. 
 
3. New Approach to Form Tolerance 
Assessment 
       

Datum concept is the guiding principle of the 
proposed approach. Datums are mostly used to position a 
feature in relation to another one [3, 4]. In Table 1 for 
each of the seven classes of symmetry, the minimum set 
of points, lines and planes that belong to the same 
automorphism group as the geometric objects in that 
class is reported. Those points, lines and planes may 

substitute each surface within the same class of 
symmetry in problems of relative positioning. It can be 
demonstrated that positioning a surface S1 in relationship 
to another surface S2 is the same as positioning a surface 
belonging to the same automorphism group of S1 relative 
to a surface belonging to the same automorphism group 
of S2. This is because the position of a geometric element 
is modified only by displacements that do not leave it 
invariant. Thus, positioning a cylinder relative to a 
sphere is the same as positioning a straight line relative to 
a point. 

 
Table 1: Seven Classes of Symmetry; dim (Aut0(S)): 
Dimension of the Automorphism Group; I: Identity 

Motion, [3] 

 
      Positioning a cloud of measured points as 
regards to its nominal integral feature is the same as 
positioning the cloud of measured points as regards to a 
reference element of the class of symmetry to which its 
nominal integral feature belongs. In this way, the 
deviation of the measured points from a reference 
element can be defined as an alternative to the deviation 
defined by equation (4). The deviation is the distance of 
the measured points from the reference element of the 
nominal surface to which the cloud of points has to be 
fitted, while in equation (4) the deviation is the error 
between the measured points and the points on the 
nominal surface that satisfy the orthogonality condition. 
This deviation will be characterized for the three cases 
under consideration: planar, cylindrical and spherical 
surfaces. Thus, instead of finding the parameters of the 
substitute feature by minimizing the deviation between 
the substitute feature and the extracted integral feature, 
the proposed algorithm transforms through an opportune 
homogeneous matrix the measurement Cartesian 
coordinates. The best transformation parameters have to 
be searched by minimizing the distance between the 

Class of 
Symmetry Auto(S) 

Reference 
Element 
(Datum) 

Dim 
(Auto(S)) 

Spherical Rot(3) Point 3 

Cylindrical Tr(1) X 
Rot(1) Straight Line 2 

Planar Tr(2) X 
Rot(1) Plane 3 

Helical 

Tr(1) X 
Rot(1) 
With Pitch 
µ 

Helix 1 

Revolute Rot(1) Point, 
Straight line 1 

Prismatic Tr(1) Straight line, 
Plane 1 

Complex I 
Point, 
Straight line, 
Plane 

0 
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cloud of measured points and a geometric element 
having the same geometric nature of the reference 
element of the class of surface from which the actual 
measured points were sampled. 

     By applying a homogeneous coordinate 
transformation  tT , the extracted integral feature is 
roto-translated so that the measured points minimize 
their distance from the reference element of the nominal 
surface. This rigid motion of the measured points is 
carried out in the coordinate frame of the datum element 
of the class to which the nominal integral feature under 
inspection belongs. In this paper, the Roll-Pich-Yaw 
angles are used to describe the spatial rotations and 
translations. Therefore, the transformation matrix can be 
described as [6, 7]: 
 



























1000
z

y

x

tCCSCS
tSCCSSCCSSSCS
tSSCSCCSSSCCC

)(





tT  (6) 

 
Where C and S mean Cos and Sin, respectively. 

The transformation matrix is generally characterized by 
six degrees of freedom that are the six transformation 
parameters  zyx t,t,t,,, t , i.e. the three rotation 

angles ,  and  around the x-, y- and z-axis of the 
datum reference system and the three translations tx, ty 
and tz along the same axes. 

Considering the new definition of the deviation, 
stated above as opposed to equation (4), the objective 
function to be minimized becomes: 
 

    
2

1




m

i
Q ii nrtTt                  (7) 

 
Where, in  represents now the point nearest to   irtT   
on the reference element. 
      The proposed approach presents two 
advantages. First, the objective function has to be 
minimized as regards the transformation parameters, t, 
that is the same for all the nominal integral features. On 
the other hand, the classical least squares approach uses 
parameters, which are specific and different for any 
different geometric features, [12]. Furthermore, the 
number of parameters to be minimized, that is the 
degrees of freedom of the transformation matrix, which 
in the general case are six, can be reduced considering the 
invariance properties of the reference element as regard 
some rigid motions. This invariance produces the 
invariance of the objective function (7) as regards the 
rigid motion of the measured points according to the 

same rigid motions that leave invariant the datum of the 
class to which the nominal feature under inspection 
belongs. 
      The proposed method has an iterative 
implementation, where  is the chosen precision of the 
algorithm. For each iteration j and for each measured 

point, 1j
ir , the nearest point on the reference feature, 

j
in , is computed. Then, the objective function is 

minimized searching for the best parameter set tj: 
 

  


 
m

i

j
i

j
i

jjQ
1

21 nrtT                               (8) 

 
Where, )( jtT  is the transformation matrix computed 

for the jth set of parameter jt . 
      The search of the minimum of the function (8) is 
a non-linear optimisation problem. It was solved using 
the numerical well-established method of 
Levenberg-Marquardt [30] that is very effective when the 
function to be minimized is a sum of squares. 
      Finally, the measured points are transformed 

by  jtT : 
 

  1 j
i

jj
i rtTr  (9) 

 

and the convergence criterion is checked,  jQQ j , 

until the convergence is achieved. The best fit 
transformation, T~ , is computed by multiplying the 
transformation matrices found at each step: 





steps of 

1

#

j

j~ TT . The vector of the optimal parameters, 

extracted from T~ , is henceforward called: 
 zyx t~,t~,t~,~,~,~~ t . 

      The proposed approach is applied to assess 
flatness, cylindricity and sphericity tolerance in the 
following paragraph 
 
3.1 Flatness assessment 
     The planar class of symmetry includes the 
surfaces which are invariant under planar displacements 
that are the two translations parallel to the plane itself and 
the rotation around the perpendicular to the plane. The 
reference element of this class will necessarily be a plane. 
There are, however, infinite planes, all parallel to each 
other, that can be chosen as reference element of a 
surface of planar class. Then, in flatness assessment the 
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measured points are transformed step by step by the 
algorithm to best fit a plane. Any plane in the Euclidean 
space could be chosen, but for the sake of simplicity the 
x-y plane of the CMM is chosen. This completely 
characterizes the nearest point of ir  and the structure of 
the objective function. 

      It is obvious that the nearest point to ir on the 
nominal plane is the point that has the first two 
coordinates equal to the first two coordinates of ir  and 

the third equal to zero:  Tyixi ,,r,r 1 0 in . Equation (7) 
can be further simplified considering that the objective 
function in this case is invariant for rotation and 
translations of the cloud of measured points around 
z-axis and along x- and y-axis of the plane reference 
frame, respectively. This invariance is a consequence of 
the invariance respect to the same displacements of the 
nominal surface, and subsequently of its reference 
element. In this way, the number of parameters to be 
optimised is reduced from 6 to 3, because it is possible to 
drop out , tx and ty from equation (7), imposing , tx and 
ty equal to zero. Then, the generic objective function is 
replaced for the planar class of symmetry by the 
following one: 
 

 

2

1

1

0

1000

00

0









































































m

i

yi

xi

z

r

r

tCCSCS

SC

CSSSC

Q irt






  (10) 

 
which is simplified to the following form: 
 

   
2

1




m

i
zziyixiz trCCrSCrSt,,Q    (11) 

 
The set of parameters,  zt,, , on which the 

objective function depends, is a reduced version of t , 
due to the application of equation (7) to the planar 
geometry. Then, the reduced set of transformation 
parameters for flatness assessment is:  zt,,t . The 
best fit parameters provided by algorithm are: 

 zt
~,~,~~ t . Thus, irtT )~( , for i  1,…, m, are the 

measured points transformed to best fit the reference 
element of the nominal integral feature from which they 
were sampled. 

After the transformation of best fit, it is possible 
to estimate the flatness tolerance by the application of the 
tolerance definition supplied by the ASME Y 14.5 

standard [9]. ASME Y 14.5 specifies the maximum 
peak-to-valley distance ht with reference to the nominal 
plane as give below: 
 

minmaxt eeh   (12) 
 

On the basis of the previous equation, the 
flatness tolerance can be estimated directly from the 
points transformed according to the computed 
parameters of best fitting. Therefore, the flatness 
tolerance is given by: 
 

   t~
zim,...,i

t~
zim,...,if rminrmaxT

11 
  (13) 

 

Where t
zir  is the third coordinate of the ith measured 

point after the best fit transformation, irtT )~( . 
      The equation of the best fitting plane in the form 
a x  b y  c z  d  0 can be obtained transforming the 
versor normal to the x-y plane,  T,,, 0 1 0 0 , through the 
generalized displacement:  zt

~,~,~t~     . 
       The product of the homogeneous matrix, 
representing the reverse best fit transformation, and the 
normal versor is: 


















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
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









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
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

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




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

00
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0
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0
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
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



~C~C

~S

~C~S

t~~C~C~S~C~S

~S~C

~C~S~S~S~C

z
 (14) 

 
Reminding that the coefficients a, b and c for a 

plane are proportional to the components of the versor 
normal to the plane, their values are obviously derived 
from equation (14):  ~C~Cc,~Sb,~C~Sa      . 
      The coefficient d can be calculated forcing the 
plane to pass for the origin of the coordinate frame, 
 T,,, 1 0 0 0 , transformed according to  zt

~,~,~     , i.e. 

for the point:  Tz ,t~,,, 0    0 0 0  . Then, the plane 
coefficients d is given by the solution of the following 
equation: 
 

zz t~~C~~d~t~cba  Cd       000   (15) 
 
3.2 Cylindricity assessment 
      The cylindrical class of symmetry encompasses 
all surfaces invariant under a translation and a rotation 
around the reference element. Their reference element is 
their axis of rotation, which is unique. 

       A straight line is the geometric element from 
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which the proposed algorithm minimizes the distance of 
the transformed points. For the sake of simplicity the 
z-axis of the cylinder reference frame is chosen, i.e., the 
straight line of equation x  0 and y  0. The nearest point 
to ir on the datum is the point 

 Tzi ,r,, 1  0 0in .Equation (7) can be simplified 
considering that the objective function in this case is 
invariant for rotation and translation of the cloud of 
measured points around z-axis and along z-axis, 
respectively. In this way, the number of parameters to be 
optimised is reduced from 6 to 4, because it is possible to 
drop out  and tz from equation (7), imposing  and tz 
equal to zero. Then, the generic objective function, 
equation (7), is replaced for the cylindrical class of 
symmetry by the following one: 

 

  



m

i
xziyixiyx )trSSrSSrC(t,t,,Q

1

2

 yziyi )trCrC( 2  (16) 

 
The set of parameters,  yx t,t,, , on which the 

objective function depends, is a reduced version of t , 
due to the application of equation (7) to the cylindrical 
geometry. Then, the reduced set of transformation 
parameters for cylindricity assessment is: 

 yx t,t,,t . The best fit parameters provided by the 

algorithm are:  yx t~,t~,~,~~ t . Thus, ir)~( tT , for i  
1,…, m, are the measured points transformed to best fit 
the datum of the nominal integral feature from which 
they were sampled. 
      Afterwards the individuation of the best fit set 
of transformation parameters, the cylindricity of the 
inspected feature can be assessed following the tolerance 
definition supplied by the ASME Y 14.5 standard [9]. 
Thus, the cylindricity of the real feature can be estimated 
from the points transformed according to the best fit 

transformation parameter, 
Tt~

zi
t~
yi

t~
xi ,r,r,rr 



 1    t

i , as: 
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m,...,i
c rrminrrmaxT  (17) 

 
It can sometimes be useful for comparison 

purpose to find the axis of the measured cylinder inside 
the cylinder reference frame. The position of this axis can 
be obtained transforming the versor of the z-axis, 

 T,,, 0 1 0 0 , through the generalized displacement: 
 0    ,t~,t~,

~
,~t~ yx   , representing the transformation 

inverse to the best fit transformation. The product of the 
corresponding homogeneous matrix and the z-axis versor 
is: 
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3.3 Sphericity assessment 
      The spherical class of symmetry encompasses 
all surfaces invariant under all rotations about the feature 
centre (spherical displacement). The reference element 
of such a surface is a point corresponding to its centre. 
      The geometric element from which the 
proposed algorithm minimizes the distance of the 
transformed points will be, as a consequence, a point. For 
the sake of simplicity the point  Ti ,,, 1 0 0 0n , i.e., the 
origin of the sphere reference system, is chosen. 
Equation (7) can be simplified considering that the 
objective function in this case is invariant for rotations of 
the cloud of measured points around x-, y-, and z-axis. In 
this way, the number of parameters to be optimised is 
reduced from 6 to 3, because it is possible to drop out , 
 and   from equation (7), imposing ,  and   equal to 
zero. Then, the objective function becomes: 
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The set of parameters,  zyx t,t,t , on which the 

objective function depends, is a reduced version of t , 
due to the application of equation (7) to the spherical 
geometry. Then, the reduced set of transformation 
parameters for sphericity assessment is:  zyx t,t,tt . 
The best fit parameters provided by the algorithm are: 

 zyx t~,t~,t~~ t . Thus, irtT )~( , for i  1,…, m, are the 
measured points transformed to best fit the datum of the 
nominal integral feature from which they were sampled. 
      Spherical features are feature of size. They are 
continuous surfaces with possible size, form and location 
errors. International Standards, both ISO and ASME [8, 
9], do not deal with the sphericity tolerance explicitly and, 
therefore, the concepts of form tolerance present in these 
standards have to be employed to the control of the 
sphericity errors, [18, 25, 26]. The profile tolerancing, for 
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line or surfaces, is considered one of the most versatile 
controls available. It can be used without datums to 
control the form of a surface. In addiction, when it is used 
with one or more datums, it contains a degree of 
orientation and form control. So profile tolerance is used 
to control the sphericity errors of the feature. After the 
best fitting step, the origin of the CMM reference system 
has become the datum of the measured data. Then, the 
sphericity tolerance can be calculated from the 
transformed data by means of the following equation: 
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From the set of best fitting parameters, 

 zyx t~,t~,t~~ t , the position of the centre of the measured 
spherical feature can be obtained transforming the origin 
of the reference system,  T,,, 1 0 0 0 , through the 
generalized displacement:  zyx t~,t~,t~~ t . This 
displacement represents the inverse of transformation 
that best fits the measured points to the origin. The 
position of the centre in the CMM reference system is 
given by: 
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In this way the location errors of the feature centre can be 
evaluated. 
 
4. Applications 
      The above algorithm was implemented on a 
AMD Athlon, 523 MB, 1800 MHz computer using 
Mathematica 5.0. The proposed method was tested to 
verify its correctness using both datasets published in 
previous papers, for comparative purposes, and datasets 
created by numerically simulating actual planar, 
cylindrical and spherical surfaces. The formers were 
published in [16] and [28] for planar surfaces, in [17] and 
[28] for cylindrical surfaces and in [27] for spherical 
surfaces. The latter were generated using an appropriate 
algorithm similar to that used in [16, 17]. This algorithm 
samples points from two nominal features at a given 
distance, so that the form tolerance is a priori known. For 

example, to simulate measured points from an actual 
cylinder two cylinders with the same axis and with a 
radius difference equal to the imposed cylindricity error 
are generated. The measured points are extracted from 
the surfaces of the two coaxial cylinders. Furthermore, a 
rigid motion is applied to the cloud of measured points; 
so that it can be positioned and orientated at will into the 
CMM reference system. The proposed algorithm was 
tested on both sparse measurements, i.e., measured 
points randomly generated on the surface, and grid points, 
i.e., measured points generated using a grid 
superimposed on the surface. The results for these two 
kinds of datasets were approximately identical. 
Therefore, this paper shows only the results obtained by a 
grid of measured points. However, the datasets in [16, 17, 
27, 28] are sparse measurements. For the presented 
applications, the adopted convergence criterion was the 

reduction of the magnitude  jQQ j  below 105. 

      The results of these evaluations using the 
proposed algorithm for each feature class are reported in 
Table 2, 3 and 4. In each Table the values reported in the 
column Nominal Tolerance are characterized by an 
indication, reporting the origin of the values. The letter 
(G) means that the nominal tolerance refers to the relative 
distance of the two parallel surfaces from which the 
dataset was generated, (CMM) indicates that the nominal 
tolerance was evaluated using a least squares technique 
on a CMM software (the name of the software used can 
be found in the cited paper), and (MZ) indicates that the 
nominal value comes from a minimum zone calculation 
(the method employed is in the corresponding paper). 

      Datasets 9 and 10 for flatness assessment, Table 
2, correspond to datasets 1 and 2 reported in [16] 
(generated datasets), while datasets 11-15 are the 
examples 1-5 of [28] (CMM-flatness datasets). Datasets 
9 and 10 for cylindricity assessment, Table 3, correspond 
to the datasets 1 and 2 reported in [17] (generated 
datasets), while datasets 11-15 correspond to the 
examples 1-5 in [28] (CMM-cylindricity datasets). 
Dataset 10 for sphericity assessment, Table 3, 
corresponds to the dataset presented in [27] (generated) 
and datasets 11-12 are the datasets 2-3 in [29] 
(measurements). The other datasets were generated for 
each class of symmetry. Five of them are characterized 
by the same form tolerance but with increasing number 
of measured points to verify the efficiency and the rate of 
convergence of the algorithm.  

      The remaining datasets have different 
orientation inside the CMM reference system and 
different tolerance form of the feature to test the 
consistency of the algorithm to different feature 
characteristics. All the datasets marked with b are 
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measurements collected on a portion of a feature. The 
obtained results were compared with the nominal value 
of tolerance. 

4.1 Flatness results 
      The results of the planar cases are presented in 
Table 2. Datasets 1-5 prove that a linear relationship 
exists between the number of measured points and the 
amount of time, in CPU seconds, the flatness algorithm 
requires computing the best fit solution, as shown in Fig.  
1(a). These results indicate that the computational effort 
is a linear function of the number of measured points. 

(a) 

(b) 

(c) 

 
Fig. 1 Efficiency of Proposed Method: (a) Flatness 

Assessment, (b) Cylindricity Assessment and                   
(c) Sphericity Assessment 

     

  
 

Fig. 2 Best Fit of a Planar Feature (Two Views of the 
Dataset 6) 

 

 

  
Fig. 3 Best Fit of a Cylindrical Feature (Two Views of 

the Dataset 8) 
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Fig. 2 shows two views of the best fitting 
procedure applied to the dataset 6. As it can be seen, the 
measured points move iteration after iteration towards 
their datum, i.e., the x-y plane. 
      For datasets 9 and 10 in the nominal tolerance 
column the flatness tolerance computed with the 
minimum zone method proposed in [16] is reported, 
because in the cited paper no nominal tolerance is 
provided for these datasets. 
      The proposed algorithm gives flatness estimates 
that are very close to the values reported in the nominal 
tolerance column. Besides, the results of the proposed 
algorithm are nearer to those due to minimum zone than 
the values obtained by Zeiss algorithm [31]. Then, it is 
proven that the proposed method allows to overestimate 
flatness less than a traditional least squares algorithm, 
such as Zeiss, does. 
 
4.2 Cylindricity results 
      Table 3 shows the results of the cylindricity 
assessment. The radius of the assessment feature is also 
given in Table 3. The amount of time needed to compute 
the cylindricity tolerance of datasets 1-5 indicates that 
the computational effort is also in this case a nearly linear 
function of the number of measured points, as shown in 
Fig. 1(b). However, the CPU time required for 
cylindricity assessment is remarkably larger than this 
required for flatness and sphericity assessment due to the 
major complexity of the algorithm. 
      Fig. 3 shows two views of the best fitting 
procedure applied to the dataset 8. The measured points 
moving iteration after iteration towards their datum, i.e., 
the z-axis, are clearly visible. 
      The proposed algorithm gives cylindricity 
estimates that are very near to the values reported in the 
nominal tolerance column. Moreover, the results of the 
proposed algorithm are closer to minimum zone results 
than the values obtained by Zeiss algorithm. This means 
that the proposed method allows overestimating 
cylindricity less than a traditional least squares algorithm, 
such as Zeiss, does. 
 
4.3 Spherical results 
      Table 4 shows the form errors computed for 
spherical features. The computational effort is still an 
almost linear function of the number of data points, see 
Fig.  1(c). The precision of the algorithm for this class of 
feature is considerably larger than that feasible for the 
other classes of symmetry because the best fit requires 
only a translation of the measured points. 
 

 
 

Fig. 4 Best Fit of a Spherical Feature (Two Views of 
the Dataset 6) 

 
      Fig.  4 shows the best fitting procedure applied 
to the dataset 6. The measured points moving iteration 
after iteration towards their datum, i.e., the origin of the 
reference frame, are clearly visible. 
 

 
 

Fig. 5 Best Fit of a Portion of a Cylindrical Feature 
(Two Views of the Dataset 8b) 
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      The proposed algorithm gives sphericity 
estimates that are very near to the values reported in the 
nominal tolerance column. Moreover, the results of the 
proposed algorithm are nearer to the minimum zone 
results than the values obtained by Zeiss algorithm. This 
surely means that the proposed method allows to 
overestimate sphericity less than a traditional least 
squares algorithm, such as Zeiss, does. 
      The algorithm is also applicable to measured 
data obtained from portion of surface. Fig.  5 shows two 
views of the best fitting procedure applied to the dataset 
8b, which was collected from a portion of a cylinder. Fig.  
6 show the algorithm applied to the best fit of a portion of 
a spherical feature (two views of the dataset 6b). 

 
Fig. 6 Best Fit of a Portion of a Spherical Feature 

(Two Views of the Dataset 6b) 
 

 
Table 2: Flatness Results 

 

Dataset 

# of 

data 

points 

Nominal 

tolerance 

[mm] 

Proposed 

algorithm  

[mm] 

Zeiss 

algorithm 

[mm] 

CPU time 

[s] 

Dataset 1 20 0.1 (G) 0.1151 0.1485 0.391 
Dataset 2 40 0.1 (G) 0.1140 0.1137 0.797 
Dataset 3 80 0.1 (G) 0.1210 0.1354 2.000 
Dataset 4 120 0.1 (G) 0.1095 0.1281 3.984 
Dataset 5 240 0.1 (G) 0.1191 0.1270 9.093 
Dataset 6 16 0.2 (G) 0.2290 0.2551 0.315 
Dataset 7 30 0.05 (G) 0.0563 0.0684 0.532 
Dataset 8 48 0.005 (G) 0.0052 0.0056 0.983 
Dataset 9 [16] 15 0.0025000 (MZ) 0.0026 0.0029 0.303 
Dataset 10 [16] 25 0.0048636 (MZ) 0.0051 0.0059 0.508 
Dataset 11 [28] 12 0.0002 (MZ) 0.0004 0.0005 0.252 
Dataset 12 [28] 20 0.0027 (MZ) 0.0027 0.0028 0.366 
Dataset 13 [28] 15 0.0002 (MZ) 0.0002 0.0002 0.285 
Dataset 14 [28] 20 0.0032 (MZ) 0.0032 0.0033 0.401 
Dataset 15 [28] 20 0.0025 (MZ) 0.0025 0.0026 0.387 
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Table 3: Cylindricity Results 
 

Proposed algorithm Zeiss algorithm 
Dataset 

# of data 

points 

Nominal 

tolerance [mm] Tolerance[mm] r [mm] Tolerance[mm] r [mm] 

CPU 

time [s] 

Dataset 1 20 0.1 (G) 0.1499 5.0450 0.1499 5.0450 2.921 
Dataset 2 40 0.1 (G) 0.1494 5.0475 0.1495 5.0475 10.969 
Dataset 3 80 0.1 (G) 0.1433 5.0512 0.1433 5.0513 45.141 
Dataset 4 120 0.1 (G) 0.1246 5.0375 0.1246 5.0375 68.235 
Dataset 5 240 0.1 (G) 0.1267 5.0213 0.1306 5.0463 224.236 
Dataset 6 40 0.2 (G) 0.3038 5.0800 0.3048 5.0801 14.570 
Dataset 7 30 0.05 (G) 0.0733 5.0225 0.0733 5.0225 17.302 
Dataset 8 240 0.005 (G) 0.0056 5.0024 0.0068 5.0025 239.420 
Dataset 8b 204 0.02 (G) 0.0210 5.0107 0.0231 5.0124 120.657 
Dataste 9 [17] 40 0.001 (MZ) 0.0040 30.0008 0.0048 30.0006 18.203 
Dataset 10 [17] 20 0.19667 (MZ) 0.2001 60.0031 0.2140 60.0096 5.109 
Dataset 11 [28] 16 0.0067 (CMM) 0.0060 0.1491 0.0067 0.1495 4.189 
Dataset 12 [28] 18 0.0006 (CMM) 0.0004 0.4946 0.0005 0.4947 4.699 
Dataset 13 [28] 16 0.0051 (CMM) 0.0047 0.5353 0.0051 0.5354 4.218 
Dataset 14 [28] 24 0.0004 (CMM) 0.0003 0.1998 0.0003 0.1999 5.362 
Dataset 15 [28] 18 0.0007 (CMM) 0.0151 0.5018 0.0152 0.5011 4.362 

 
 
 

Table 4: Sphericity Results 
 

Proposed algorithm Zeiss algorithm 

Dataset 
# of data 

points 

Nominal 

tolerance [mm] 
Tolerance 

[mm] 
r [mm] 

Tolerance 

[mm] 
r [mm] 

CPU time 

[s] 

Dataset 1 20 0.1 (G) 0.1000 6.100 0.1282 6.060 0.485 
Dataset 2 40 0.1 (G) 0.1000 6.000 0.1471 6.045 0.375 
Dataset 3 80 0.1 (G) 0.1000 6.100 0.1599 6.053 0.797 
Dataset 4 120 0.1 (G) 0.1000 6.100 0.1314 6.052 1.312 
Dataset 5 240 0.1 (G) 0.1000 6.000 0.1166 6.048 4.031 
Dataset 6 960 0.2 (G) 0.2346 6.095 0.2346 6.095 10.564 
Dataset 6b 800 0.1 (G) 0.1039 6.052 0.1040 6.052 7.971 
Dataset 7 30 0.05 (G) 0.0500 6.050 0.0853 6.028 0.308 
Dataset 8 48 0.005 (G) 0.0050 6.000 0.0072 6.002 0.385 
Dataset 9b 800 0.1 (G) 0.1168 6.075 0.1168 6.075 14.954 
Dataset 10 [27] 50 0.01 (G) 0.0084 1.004 0.0085 1.004 1.062 
Dataset 11 [29] 40 0.008327 (MZ) 0.0085 0.999 0.0091 0.999 0.329 
Dataset 12 [29] 36 0.009669 (MZ) 0.0100 50.034 0.0101 50.034 0.299 
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5. Conclusions 
      The present work shows a new algorithm to 
evaluate flatness, cylindricity and sphericity tolerance 
that is based on surface invariance with regard to rigid 
motions. The new algorithm transforms the measured 
coordinates, through homogeneous transformation 
matrices, in order to best fit the reference element 
(datum) of the class of the surface from which the actual 
measurements were sampled.  
     The proposed approach was applied to a set of 
cases in order to validate the effectiveness and the 
robustness of the approach. The obtained results indicate 
that the proposed algorithm provides accurate and quick 
assessment. 
      In all cases the new method results in a smaller 
zone values than the classical least squares methods. The 
proposed algorithm gives flatness, cylindricity and 
sphericity estimates that are very near to minimum zone 
results. Moreover, the results of the proposed algorithm 
are nearer to those due to minimum zone than the values 
obtained by Zeiss algorithm. It is demonstrated that the 
proposed method allows to overestimate form tolerance 
less than a traditional least squares algorithm, such as 
Zeiss, does. Then, it is proven that the proposed method 
is a favourable alternative to the classical least squares 
algorithms for form tolerance assessment. 
      In a future study, the proposed approach will be 
applied to other tolerance controls: orientation control 
(perpendicularity, angularity and parallelism) and profile 
control. 
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