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ABSTRACT 
 An optimal control strategy for batch processes manufacturing using particle swam 
optimisation (PSO) and stacked neural networks is presented in this paper. Stacked neural networks 
are used to improve model generalisation capability, as well as provide model prediction confidence 
bounds. In order to improve the reliability of the calculated optimal control policy for batch processes 
manufacturing, an additional term is introduced in the optimisation objective function to penalise 
wide model prediction confidence bounds. PSO can cope with multiple local minima and could 
generally find the global minimum. Application to a simulated fed-batch process demonstrates that 
the proposed technique is very effective. 
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1. Introduction 
Batch or semi-batch processes are suitable for 

the responsive manufacturing of high value added 
products [1]. To maximise the profit from batch process 
manufacturing, optimal control should be applied to 
batch processes. The performance of optimal control 
depends on the accuracy of the process model. 
Developing detailed mechanistic models is usually very 
time consuming and may not be feasible for agile 
responsive manufacturing. Data based empirical models, 
such as neural network models [2] and nonlinear partial 
least square models [3], and hybrid models [4] have to 
be utilised. Stacked neural networks have been shown to 
possess better generalisation capability than single 
neural networks [5,6] and are used in this paper to 
model batch processes. An additional feature of  stacked 
neural networks is that they can also provide prediction 
confidence bounds indicating the reliability of the 
corresponding model predictions [7]. Due to model-
plant mismatches, the “optimal” control policy 
calculated from a neural network model may not be 
optimal when applied to the actual process [8]. Thus it is 
important that the calculated optimal control policy 
should be reliable. 

Conventional gradient base optimisation 
techniques are not effective to deal with objective 
functions with multiple local minima and can be trapped 
in local minima. Particle swam optimisation (PSO) is a 
recently developed optimisation technique that can cope 
with multiple local minima. This paper proposes using 
PSO and stacked neural networks to find the optimal 
control policy for batch processes. A standard PSO 
algorithm and three new PSO algorithms with local 

search were developed. In order to enhance the 
reliability of the obtained optimal control policy, an 
additional term is added to the optimisation objective 
function to penalise wide model prediction confidence 
bounds. 

2. Particle Swarm Optimisation 
PSO was first proposed by Kennedy and 

Eberhart [9]. The main principle behind this 
optimisation method is communication. In PSO there is 
a group of particles that look for the best solution within 
the search area. If a particle finds a better value for the 
objective function, the particle will communicate this 
result to the rest of the particles.  

All the particles in the PSO have “memory” 
and they modify these memorized values as the 
optimisation routine advances. The recorded values are: 
velocity (V), position (p), best previous performance 
(pbest) and best group performance (gbest). The 
velocity describes how fast a particle should move from 
its current position which contains the coordinates of the 
particle. The last two parameters are the recorded best 
values that have been found during the iterations. A 
simple PSO algorithm is expressed as [9]: 

V(k+1)=wV(k)+C1r(pbest(k)-
p(k))+C2r(gbest(k)-p(k)) (1) 

p(k+1) = p(k) + V(k+1)  (2) 
where w is the halt parameter, C1 is the 

personal parameter, C2 is the group parameter and r is a 
random number between 0 and 1. 
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The parameters w, C1 and C2 play important 
roles in PSO. The halt parameter (w) helps the particles 
to move around the search area. If it is too large the 
particles may miss the solution and if it is too small they 
may not reach it. Good values are usually slightly less 
than 1 [9]. The coefficients C1 and C2 indicate the 
preference of the particles for personal or communal 
results. If the value of C1 is larger than C2 then the 
particles will search for the best value within the best 
results obtained during its own search; they will not try 
to reach a communal best point. If vice versa, the 
particles will not perform individual searches, this will 
diminish the ability of the particles to perform 
“adventurous” searches. Kennedy and Eberhart [9] 
recommended that these values should be 2. This keeps 
a balance between the personal and communal search. 

Four PSO algorithms were developed here and 
they perform different ways to communicate search 
results within the community. The first one is the 
simplest code presented in [9], where the particles have 
the ability to communicate its result to all the members 
of the community. The other three are based on local 
searches performed within small groups formed in the 
community. In the second algorithm, the group is based 
on a circular community [10]. These small groups will 
only communicate with members of their own 
community. The expected result with this formation is 
that the particles will search more intensively the 
solution area. In the third algorithm, local search is 
presented as a cluster community. The difference with 
the circular community is the fact that only one particle 
will communicate and compare the results with 
members of other groups. The fourth algorithm 
performs a geographical search in that the particles will 
communicate with the particles that are close to them in 
the solution area. The expected results are that the local 
search algorithms explore more intensively the search 
area.  

The algorithms were then tested on the 
following two optimisation problems with multiple local 
minima or maxima: 
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All the four PSO algorithms can find the global 
optimal solutions whereas the gradient based 
optimisation algorithm from the MATLAB 
Optimisation Toolbox, fminunc, fails to find the global 
optimal solutions when the initial values are not close to 
the global optimal solutions. 

3. Modelling of A Fed-Batch Process 
Using Neural Networks 

3.1 A Fed-Batch Process 
The fed-batch reactor used in this work was taken from 
[11]. The batch reactor is based on the following 
reaction system: 
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This reaction is conducted in an isothermal 
semi-batch reactor. The desired product in this system is 
C. The objective is to convert as much as possible of 
reactant A by the controlled addition of reactant B, in a 
specified time tf = 120 min. It is not appropriate to add 
all B initially because the second reaction will take 
place, increasing the concentration of the undesired by-
product D. Therefore, to keep a low concentration of 
product D and at the same time increase the 
concentration of product C, the reactant B has to be fed 
in a stream with concentration bfeed = 0.2. A mechanistic 
model for this process can be found in [11]. 

3.2 Modelling the Fed-Batch Process Using 
Stacked Neural Networks 

Neural network models for the prediction of 
the amount of desired product CC(tf)V(tf) and the amount 
of undesired by-product CD(tf)V(tf)  at the final batch 
time are of the form: 
 y1 = f1(U)           (5) 
 y2 = f2(U)           (6) 

where y1 = CC(tf)V(tf), y2 = CD(tf)V(tf), U = [u1 
u2 … u10]T is a vector of the reactant feed rates during a 
batch, f1 and f2 are nonlinear functions represented by 
neural networks. 

For the development of neural network models 
simulated process operation data from 50 batches with 
different feeding profiles were generated using the 
mechanistic model of the process. In each batch, the 
batch duration is divided into 10 equal stages. Within 
each stage, the feed rate is kept constant. The control 
policy for a batch consists of the feed rates at these 10 
stages.  

In the stacked neural network models several 
individual networks are trained using bootstrap re-
sampling of the original data. The individual network 
outputs are combined to give the final model output. For 
each of the stacked neural network models, a group of 
thirty individual neural networks were developed. Each 
neural network contains in the hidden layer three nodes. 
The number of hidden nodes was selected based on the 
performance on the testing data. The nodes in the hidden 
layer use a hyperbolic tangent activation function while 
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that in the output layer uses a linear activation function. 
The stacked neural network output is taken as the 
average of the individual network outputs. 

Fig. 1 and Fig. 2 show, respectively, the 
performance of individual networks and stacked 
networks for predicting the amount of desired product 
CC(tf)V(tf) on the training and unseen validation data 
sets. Fig. 1 indicates that in some networks the SSE on 
the training data is small but this is not the case on the 
unseen validation data. These results show that 
individual networks are not reliable. It can be seen from 
Fig. 2 that stacked networks give consistent 
performance on the training data and on the unseen 
validation data. The performance gradually improves 
when more networks are combined and approaches a 
stable level. This is observed on both the training and 
unseen validation data. This result indicates that the 
stacked model for predicting the amount of desired 
product CC(tf)V(tf) is more reliable as the number of 
individual networks is increased. It does not matter if 
some networks do not have a good performance, what 
matters is the communal performance of the group. 

 

 

Fig. 1 Performance of individual networks for 
predicting CC(tf)V(tf) 

 

Fig. 2 Performance of stacked networks for 
predicting CC(tf)V(tf) 

4. Optimising Control Using PSO 
The objective of the optimisation is to 

maximise the amount of the final product while 
reducing the amount of the by-product. The 
optimisation problem solved in this work is: 
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where α1 and α2 are weighting parameters 

which were both set to 0.5 in this study, U is a vector of 
control actions (reactant feed rates), and V is the 
reaction volume. 

Table 1 lists the parameters used in global PSO 
(PSOG1 to PSOG4) and local PSO (PSOL1 to PSOL4) 
algorithms. For the local PSO algorithms, the sizes of 
the internal communities were kept the same in all the 
cases: 17 particles. 

Table 1. Parameters used in PSO algorithms 

 PSO
G1 

PSO
G2 

PSO
G3 

PSO
G4 

PSO
L1 

PSO
L2 

PSO
L3 

PSO
L4 

Partic
les 50 70 50 70 20 40 20 40 

Halt 0.01 0.01 0.005 0.005 0.01 0.01 0.005 0.005 

For the purpose of comparison, optimisation 
using a single neural network was first carried out. 
Table 2 shows the obtained results. As can be seen from 
the table, the values for the difference between the final 
amounts of product and by-product using the PSO codes 
were similar to the ones obtained using the MATLAB 
Optimisation Toolbox function, fmincon, in this fed-
batch reactor. However, PSO can cope with multiple 
local minima in general as shown in Section 2.  

It can also be appreciated that an increment in 
the number of particles in the global version of the PSO 
code does not help the code to find a better solution for 
the optimization problem. This could indicate that the 
PSO code only needed a minimum number of particles 
and the inclusion of more particles will not be helpful. A 
different behaviour was encountered in the local version 
of the PSO. When more particles were used for the 
solution of the problem, then the code required less 
number of iterations to solve the problem. 

Changing the value of the halt did not show 
any improvement in the performance. As can be seen 
from the table, the results obtained using different halt 
values are similar. Another difference that could be seen 
between the two PSO codes is the fact that the local 
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version can find a similar answer to the problem using 
fewer particles than the global version of the PSO code.  

Once the optimal feed rates were obtained, they 
were applied to the actual process (i.e. simulation by the 
mechanistic model of the process). Table 2 shows the 
difference between the amounts of the final product and 
by-product on neural network model and the actual 
process. It can be seen from Table 2 that the actual 
amounts of product and by-product under these 
“optimal” control policies are quite different from the 
neural network model predictions. This indicates that 
the single neural network based optimal control policies 
are only optimal on the neural network model and are 
not optimal on the real process. Hence, they are not 
reliable. This is mainly due to the model plant 
mismatches, which is unavoidable in data based 
modelling.  

A method to overcome the impact of model 
plant mismatch on optimisation performance was 
previously investigated by Zhang [8] where model 
prediction confidence bounds are incorporated as a 
penalty in the objective function. Therefore, the 
objective function can be modified as 
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where stderr[C] and stderr[D] are the standard 

errors of the stacked models, α3 is a weighting factor for 
model prediction confidence and was selected as 0.5 in 
this work. 

Table 2. Values of ([C](tf) - [D](tf))V(tf) on neural 
network models and actual process 

 Single neural 
network 

Stacked neural 
network 

 Neural 
network 

Process Neural 
network 

Process 

fmincon 0.0411 0.0314 0.0304 0.0363 
PSOG1 0.0400 0.0344 0.0296 0.0359 
PSOG2 0.0405 0.0319 0.0297 0.0370 
PSOG3 0.0399 0.0325 0.0302 0.0358 
PSOG4 0.0396 0.0347 0.0300 0.0368 
PSOL1 0.0377 0.0341 0.0298 0.0338 
PSOL2 0.0407 0.0307 0.0298 0.0364 
PSOL3 0.0394 0.0364 0.0297 0.0348 
PSOL4 0.0397 0.0301 0.0297 0.0363 

 
Table 2 shows the results obtained using the 

new objective function with stacked neural network 
models. It can be seen from Table 2 that the modified 

objective function with stacked neural network models 
leads to better performance on the actual process. It can 
be appreciated that the actual performance is very close 
to the ones calculated using the stacked neural network. 
This demonstrates that control policies obtained using 
stacked neural networks considering model prediction 
confidence bounds is much more reliable than those 
obtained using a single neural network model 

5. Conclusions 
The study demonstrates that particle swam 

optimisation is a powerful optimisation technique, 
especially when the objective function has several local 
minima. Conventional optimisation techniques could be 
trapped in local minima but PSO could in general find 
the global minimum. Stacked neural networks can not 
only given better prediction performance but also 
provide model prediction confidence bounds. In order to 
improve the reliability of neural network model based 
optimisation, an additional term is introduced in the 
optimisation objective to penalize wide model 
prediction confidence bound. The proposed technique is 
successfully demonstrated on a simulated fed-batch 
reactor. 
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